uva_11584_Partitioning by Palindromes( DP )

題意:

給你一個字符串,讓你去劃分該字符串,目標使得劃分出最小的回文串

分析:

一開始考慮是個區間DP,想都不想就寫了交上去,結果是TLE,後來發現數據量是10^3,區間DP的時間複雜度高達O(n^3),TLE是正常的

正解:

f[i]表示字符串底i個字符的時候,所能劃分的最小回文串的數量

f[i] = min(f[i], f[j]+cost(j+1,i)).

Code;

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define REPI(i, s, e)    for(int i = (s); i <= (e); i ++)
#define REPD(i, e, s)    for(int i = (e); i >= (s); i --)

const int MAXN = 1000;
const int INF  = 0x3f3f3f3f;

int f[MAXN+1];
char str[MAXN+1];

void input(void)
{
	scanf("%s", str);
}

inline int ok(int l, int r)
{
	int l_idx = l, r_idx = r;
	while( l_idx <= r_idx ) {
		if( str[l_idx] != str[r_idx] ) {
			return 0;
		}
		l_idx += 1, r_idx -= 1;
	}
	return 1;
}

int process(void)
{
	int len;
	
	f[0] = 1;
	len = strlen(str)-1;
	
	for(int i = 1; i <= len; i ++) {
		f[i] = INF;
		for(int j = 0; j <= i; j ++) {
			if( !ok(j, i) ) {
				continue;
			}
			f[i] = min(f[i], ((!j)? 0 : f[j-1])+1);
		}
	}
	
	return f[len];
}

int main(int argc, char **argv)
{
#ifndef ONLINE_JUDGE
	freopen("test.in", "r", stdin);
#endif
	int cas;
	scanf("%d", &cas);
	REPI(k, 1, cas) {
		input();
		printf("%d\n", process());
	}
	return 0;
}


<think>嗯,用户问的是关于object.perform_partitioning()这个方法的介绍。首先,我需要确定这个方法是属于哪个库或者框架的,因为不同的库可能有不同的实现。比如在Python中,Pandas的DataFrame有partition方法吗?或者是不是Dask里的?或者可能是一些分布式计算框架比如PySpark?或者用户可能在使用某个特定领域的库,比如网络分割或者图分析相关的? 不过,从方法名来看,perform_partitioning听起来像是执行某种分区操作。分区在数据处理中常见,比如将数据分成多个部分以便并行处理。比如在机器学习中,数据分区为训练集、验证集和测试集。或者在数据库中对表进行分区提高查询效率。或者在分布式系统中,数据分片存储。 如果假设这个方法是某个数据处理库中的,比如Dask或PySpark,那可能需要解释分区的作用。比如在PySpark中,RDD或DataFrame的分区会影响并行计算的效率,perform_partitioning可能是指根据某个键值重新分配数据到不同的分区。 但可能用户提到的object是一个特定类的实例,比如某种图结构,perform_partitioning可能是指将图分成多个子图。比如社区检测或者负载均衡中的分区。 也有可能是在工作流或任务调度中,将任务分成多个部分并行执行。这时候perform_partitioning可能负责任务的划分。 由于信息有限,我需要给出一个比较通用的解释,同时指出可能的应用场景,并建议用户提供更多上下文,比如使用的库或代码示例,以便更准确地回答。 此外,用户可能在使用某个特定的库,而这个方法可能有参数和返回值,需要说明可能的参数,比如分区键、分区数量、分区策略等。同时,返回值可能是分区后的对象或者分区后的结果集合。 需要注意语法正确,使用中文,结构清晰,分步骤解释。可能的结构是:定义、常见应用场景、参数说明、返回值、示例代码(如果有的话)、注意事项等。 但用户没有提供具体代码或库的信息,所以需要保持回答的通用性,同时提醒用户补充信息以获得更详细的解答。</think>关于 `object.perform_partitioning()` 方法的解释如下: --- ### 1. 基本定义 `perform_partitioning()` 通常是一个面向对象编程中用于 **执行数据/对象分区** 的方法。其核心功能是: - 将数据或对象集合 **按特定规则划分为多个子集**(例如按哈希、范围、随机分布等策略) - 常用于分布式系统、数据库分片或并行计算场景 --- ### 2. 典型应用场景 | 场景类型 | 具体用途 | |-------------------|------------------------------------------------------------------------| | **分布式存储** | 将数据分片存储到不同节点(如HDFS、Cassandra) | | **并行计算** | 划分任务到多个工作进程(如Spark RDD分区) | | **数据库分表** | 按时间/ID范围拆分大表(如MySQL水平分表) | | **负载均衡** | 将请求分配到不同服务器 | --- ### 3. 常见参数与返回值 ```python # 伪代码示例 partitioned_data = object.perform_partitioning( strategy="hash", # 分区策略(hash/range/random) num_partitions=4, # 分区数量 key=lambda x: x.id # 分区键(用于哈希或范围判断) ) ``` - **输入参数**: - `strategy`:分区算法(哈希/范围/自定义函数) - `num_partitions`:目标分区数量 - `key`:用于计算分区的字段或函数 - **返回值**: - 分区后的对象集合(如迭代器、分片列表等) --- ### 4. 技术实现要点 1. **一致性哈希**:避免因节点增减导致大规模数据迁移 2. **数据局部性**:优化分区策略以减少跨节点通信 3. **容错机制**:通过副本分区保证数据可靠性 4. **动态调整**:支持运行时弹性扩缩分区数量 --- ### 5. 注意事项 - **分区倾斜**:需监控各分区数据量,避免热点问题 - **跨分区操作**:JOIN/聚合等操作可能需要特殊处理(如Shuffle) - **序列化**:跨网络传输时需确保数据可序列化 --- 如需更具体的分析,请提供以下信息: 1. 该方法的上下文环境(如使用的框架/库) 2. 对象的类型定义 3. 实际调用代码片段 示例问题补充: ```python # 请提供类似这样的代码上下文 from some_library import DataProcessor processor = DataProcessor() processor.perform_partitioning(...) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值