leetCode第553题 最优除法
链接:https://leetcode-cn.com/problems/optimal-division
给定一组正整数,相邻的整数之间将会进行浮点除法操作。例如, [2,3,4] -> 2 / 3 / 4 。
但是,你可以在任意位置添加任意数目的括号,来改变算数的优先级。你需要找出怎么添加括号,才能得到最大的结果,并且返回相应的字符串格式的表达式。你的表达式不应该含有冗余的括号。
示例:
输入: [1000,100,10,2]
输出: "1000/(100/10/2)"
解释:
1000/(100/10/2) = 1000/((100/10)/2) = 200
但是,以下加粗的括号 "1000/((100/10)/2)" 是冗余的,
因为他们并不影响操作的优先级,所以你需要返回 "1000/(100/10/2)"。
其他用例:
1000/(100/10)/2 = 50
1000/(100/(10/2)) = 50
1000/100/10/2 = 0.5
1000/100/(10/2) = 2
说明:
输入数组的长度在 [1, 10] 之间。
数组中每个元素的大小都在 [2, 1000] 之间。
每个测试用例只有一个最优除法解。
先考虑怎么进行暴力算法再进行优化。
从除法进行分析,被除数 / 除数 = 商,要使商最大,那么被除数越大越好,除数越小越好。
结合暴力算法分析,我们需要遍历整个列表找到一个最佳切分点,使得左边越大,使得右边越小。可以自定义函数max()用于求解左边如何运算使得左边越大,定义min()函数使得右边越小。
以 i 为切分点,max(nums[:i]) / min(nums[i+1:])就是我们需要的结果。
那么max()和min()部分怎么求解呢?
对于max部分,同样可以调用自身,寻找最佳切分点求得最大值。
对于min部分,同样也是调用这两个部分,要使min部分最小,也得寻找最佳切分点,但是是使得左边越小右边越大。
这样的思路很明显会往递归上靠,这样递归下去不断记录切分点,记录括号的位置,然后构造字符串。
但这样下去最终的字符串是很难构建的!!!
很可能就这样掉入陷阱,因为递归下去,每一个都是切分点
我们看[1000,100,10,2]
1000就是最佳切分点,左边最大,右边最小
再看[100,10,2]这个部分,100就是最佳切分点,左边最大,右边最小
[10,2]这个部分更不用说了,10就是最佳切分点
“(1000 / (100 / (10 /2)))”就是被记录的字符串
这时还可以通过设置间隔,控制括号的输出
如果是很长的列表一定会出问题。
但如果你能注意到每个点都是最佳切分点,那么就离正确答案很近了。
从数学角度上来看,一个数除以一个大于1的数肯定会变小(列表元素已经给了范围),除的越多,就会越小,所以左边部分最大的情况就是只有一个数。
反过来看,右边除的越多,值就会越小,最好的情况就是一直除下去得到最小值。
-----------------------------------------------------
所以从第二个元素开始全部括起来就行了。
# python3
class Solution:
def optimalDivision(self, nums: [int]) -> str:
if len(nums) < 2:
return str(nums[0])
if len(nums) == 2:
str1 = str(nums[0]) +"/" + str(nums[1])
return str1
str1 = ""
str1 += str(nums[0]) + "/" + "("
for i in nums[1:-1]:
str1 += str(i) + "/"
str1 += str(nums[-1]) + ")"
return str1