ONNXRuntime介绍及如何使用ONNXRuntime进行模型推理

1151 篇文章 ¥299.90 ¥399.90
本文详细介绍了如何使用ONNXRuntime进行深度学习模型推理。从安装ONNXRuntime开始,接着展示如何加载本地ONNX模型,以及如何进行模型推理。通过Python代码示例,演示了对图像进行分类的过程,突显了ONNXRuntime的易用性和高性能特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ONNXRuntime介绍及如何使用ONNXRuntime进行模型推理

随着人工智能的发展,越来越多的深度学习模型被应用到实际场景中。ONNX(Open Neural Network Exchange)是一个可跨平台、可扩展的开源模型交换格式,许多常见的深度学习框架都支持导出ONNX模型。而ONNXRuntime是由微软开发的一个高性能、可扩展、跨平台的推理引擎,可以对导出的ONNX模型进行优化和部署。

ONNXRuntime支持使用C++、Python、Java等多种编程语言进行编写,并且提供了简单易用的API,使得使用者可以方便地进行模型推理。下面以使用Python进行ONNXRuntime的模型推理为例,详细介绍如何使用ONNXRuntime。

安装ONNXRuntime

首先需要安装ONNXRuntime,在Python中可以使用pip进行安装:

pip install onnxruntime

加载模型

ONNXRuntime支持从本地文件或URL加载ONNX模型,下面是从本地文件加载模型的示例代码:

import onnxr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值