层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。创建聚类树有自下而上合并和自上而下分裂两种方法。
1. Bisecting K-Means二分k均值聚类算法(自上而下)
Bisecting k-means聚类算法,即二分k均值算法,它是k-means聚类算法的一个变体,主要是为了改进k-means算法随机选择初始质心的随机性造成聚类结果不确定性的问题,而Bisecting k-means算法受随机选择初始质心的影响比较小。
首先,我们考虑在欧几里德空间中,衡量簇的质量通常使用如下度量:误差平方和(Sum of the Squared Error,简称SSE),也就是要计算执行聚类分析后,对每个点都要计算一个误差值,即非质心点到最近的质心的距离。那么,既然每个非质心点都已经属于某个簇,也就是要计算每个非质心点到其所在簇的质心的距离,最后将这些距离值相加求和,作为SSE去评估一个聚类的质量如何。我们的最终目标是,使得最终的SSE能够最小,也就是一个最小化目标SSE的问题。在n维欧几里德空间,SSE形式化地定义,计算公式如下:

Bisecting k-means聚类算

层次聚类(Hierarchical Clustering)包括Bisecting K-Means(自上而下)和Agglomerative Hierarchical Clustering(自下而上)。Bisecting K-Means通过最小化误差平方和(SSE)进行二分,适合球形簇。AHC通过计算相似度合并类别,采用Average Linkage计算组合数据点间的距离,更合理但计算复杂。
最低0.47元/天 解锁文章
1748

被折叠的 条评论
为什么被折叠?



