聚合聚类(Agglomerative Clustering)是一种层次聚类算法,通过逐步合并或“聚集”它们来构建嵌套聚类。这种方法采用自底向上的方式构建聚类层次:它从将每个数据点作为单个聚类开始,然后迭代合并最接近的聚类对,直到所有数据点合并为一个聚类,或直到达到指定的聚类数量。以下是更详细的概述:
聚合聚类的工作原理
- 初始化:开始时,将每个数据点视为一个单独的聚类。因此,如果你有N个数据点,你最初会有N个聚类。
- 相似性度量:选择一个度量标准来衡量聚类之间的距离(例如,对于空间中的点使用欧几里得距离,但根据数据的性质可以使用其他距离)。
- 连接准则:选择一个连接准则,这决定了作为观测对之间距离的函数的聚类集合之间的距离。常见的连接准则包括:
- 最短连接:两个聚类之间的距离定义为一个聚类中任何成员到另一个聚类中任何成员的最短距离。
- 最长连接:两个聚类之间的距离定义为一个聚类中任何成员到另一个聚类中任何成员的最长距离。
- 平均连接:两个聚类之间的距离定义为一个聚类中每个成员到另一个聚类中每个成员的平均距离。
- Ward方法:两个聚类之间的距离通过两个聚类合并后总体内聚类方差增加量来定义。
- 迭代合并:在每一步中,根据所选的距离和连接准则,找到最接近的聚类对并将它们合并为一个单独的聚类。更新存储聚类之间距离的距离矩阵。
- 终止:重复迭代合并,直到所有数据点合并为一个聚类或达到停止准则(例如,期望的聚类数量)。
优点和缺点
优点:<