- 博客(70)
- 收藏
- 关注
原创 2024/11/10周报
本周阅读了一篇基于基于图优化的工业废水进水水质预测混合深度学习框架的文章,并对文中提到的GCN+CNNGA混合模型进行实验,该模型整合图卷积网络(GCN)、卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制,不仅能高效提取高维度数据的局部和全局特征,还能够捕捉长时间依赖性,进而提升进水水质预测的准确性和稳定性。
2024-11-10 18:07:29 998
原创 2024/11/3周报
A2/O工艺通过厌氧、缺氧和好氧的相互作用,有效去除了污水中的有机物、氮和磷。其详细的反应原理和流程,强调了各个反应阶段的重要性和相互关系。通过合理的监控和优化,可以显著提高处理效率,达到环保标准,为可持续发展贡献力量。随着技术的进步,A2/O工艺也在不断演化,以适应日益严峻的水资源和环境保护挑战。
2024-11-03 12:03:25 925
原创 2024/10/27周报
本周对南宁伶俐工业园区污水处理厂进行调研,了解了该污水处理厂的详细工艺。又基于UCI水处理数据集,使用深度学习方法构建了预测模型,对水处理单元的进出水水质进行预测分析。数据预处理包括数据清洗、PCA降维、滑动窗口数据增强等,以提升模型的计算效率和准确性。模型采用卷积神经网络(CNN)、长短期记忆网络(LSTM)及注意力机制结合的CLATT模型,通过多层卷积、LSTM层、多头注意力机制及残差块提取特征,并用全连接层输出水质预测值。
2024-10-27 15:20:57 910
原创 2024/10/20周报
本周对以下是使用PyTorch实现CNN-LSTM-注意力机制(CLATT)模型的完整代码示例。该代码包括了数据生成、模型构建、训练和测试的基本步骤。为了演示模型,这里提供了一个随机生成的模拟污水处理数据集。数据集生成首先我们生成一个模拟的污水处理数据集,其中包括进水和出水的水质指标。每个样本包含6个进水特征和4个出水目标。# 生成模拟数据集# 随机生成进水和出水水质指标X = np.random.rand(n_samples, n_in_features) * 100 # 进水特征数据。
2024-10-20 19:13:05 715
原创 2024/10/13周报
本周继续撰写年度进展报告,总结分析污水处理厂的各种工艺,并阅读了一篇基于注意力的CNN-LSTM方法用于高效废水水质预测的文章,本文提出了一种基于注意力机制的CNN-LSTM混合模型(CLATT),用于预测污水处理厂(WWTP)出水水质,通过结合CNN、LSTM和注意力机制,成功提高了污水处理厂出水水质的预测精度和稳定性。本文提出的CLATT模型通过结合CNN、LSTM和注意力机制,成功提高了污水处理厂出水水质的预测精度和稳定性。
2024-10-13 20:19:03 717
原创 2024/10/6周报
本周对广西的一些污水处理厂工艺进行了解,常见的工艺主要包括活性污泥法、生物膜法、MBR(膜生物反应器)、氧化沟工艺等,此外对评价工艺用的一些指标进行学习,并阅读了一篇基于LSTM的污水生物反应器模型预测控制及合理性验证的文章,文章基于历史运行经验提出了三种合理性验证方法。通过华东某污水处理厂的实际运行数据验证了该方法的有效性。结果表明,LSTM-MPC预测模型能够较准确地预测AAO系统的水质变量,在验证数据集上的均方误差(MSE)接近2.64,Nash-Sutcliffe模型的有效系数(NSE)为0.99。
2024-10-06 18:57:10 983
原创 2024/9/29周报
本周对污水处理工艺相关流程进行进一步的学习。污水处理是指将受到污染的水通过一系列处理工艺净化到可以排放到自然水体、灌溉田地或再利用(如工业用水、城市杂用水等)的过程。具体工艺会根据污水的来源、污染物种类以及当地的环境标准等因素有所不同。随着技术的进步,新的处理技术和方法也在不断发展中。污水处理工艺流程一般分为以下几个主要阶段,每个阶段包括不同的工艺单元,旨在去除污水中的污染物,使其达到排放或回用标准。1. 预处理阶段。
2024-09-29 19:43:44 1124
原创 2024/9/22周报
污水处理单元评价指标体系是用于评估和衡量各个污水处理单元(如污水处理厂中的处理设备或技术工艺)的性能和效率的系统性方法。该体系通过设定一系列的关键性能指标(KPI)来衡量污水处理过程中各个环节的表现,以确定其处理效果和效率。污水处理单元评价指标体系中的数学表达式用于定量化不同的处理单元表现,从而提供一个基于数据的评价和优化手段。通过结合污染物去除率、能效比、水力停留时间、处理负荷等指标,可以构建一个全面的模型,帮助污水处理厂实时监控和优化其处理单元的运行表现。
2024-09-22 13:18:06 910
原创 2024/9/1周报
IntelliJ IDEA Ultimate 2024最新版遇到scanner不能输入中文的情况,查阅资料和多方求助后无果,最终选择卸载重新安装2023年的旧版本解决。
2024-08-27 10:44:18 1139
原创 2024/8/25周报
多目标优化(Multi-Objective Optimization, MOO)是优化领域的一个分支,它处理的是同时优化多个相互冲突的目标函数的问题。在实际应用中,很少有决策问题只涉及单一目标,通常需要在多个目标之间找到平衡点。例如,在工程设计中可能需要同时考虑成本、性能和可靠性等因素。
2024-08-23 10:12:12 428
原创 2024/8/18周报
本周对项目申报书中提及的蚁群算法、遗传算法与多目标优化算法的一些基础内容进行学习,遗传算法(Genetic Algorithm, GA)与蚁群算法(Ant Colony Optimization, ACO)都是元启发式算法,它们被设计用来解决复杂的优化问题。虽然这两种算法都属于同一类算法家族,但它们的灵感来源、基本原理以及实现机制有所不同。遗传算法和蚁群算法都是强大的优化工具,它们各自有独特的应用领域。在某些情况下,将这两种算法结合起来可以更好地解决特定问题。
2024-08-18 20:42:56 719
原创 2024/8/11周报
本周阅读的文献,提出了一种结合离散小波变换(DWT)和主成分分析(PCA)预处理技术的混合长短期记忆模型。其中采用DWT法消除需水量序列的噪声成分,采用主成分分析方法选择需水量影响因子中的主成分。此外,建立了两个LSTM网络,利用DWT和PCA技术的结果进行城市日需水量预测。最后通过与其他基准预测模型的比较,证明了该模型的优越性。本周初步学习了PCA的简单示例,下周将继续学习PCA降维的相关知识,即为什么协方差的特征值对应的特征向量构成的矩阵能够实现降维的效果。
2024-08-11 14:54:08 401
原创 2024/8/4周报
本周阅读了一篇关于时序预测在汇率中的应用的文章,作者混合使用多种非线性模型,还调整了自回归积分移动平均(ARIMA)和自回归分数积分移动平均(ARFIMA)模型,用多种误差指标分析结果,结果表明,混合神经网络模型优于其他方法来预测汇率。此外,还对self-attention等内容进行复习和代码实现。自注意力机制是注意力机制的变体,其减少了对外部信息的依赖,更擅长捕捉数据或特征的内部相关性。自注意力机制在文本中的应用,主要是通过计算单词间的互相影响,来解决长距离依赖问题。
2024-08-04 19:16:59 653
原创 2024/7/28周报
本周阅读了一篇基于LSTM和注意机制的水质预测的文章,以澳大利亚Burnett河为研究对象。本文利用LSTM和AT-LSTM模型对伯内特河溶解氧进行了一步预报和多步预报,并对预报结果进行了比较。研究结果表明,包含注意力机制提高了LSTM模型的预测性能。此外,还对自注意力机制等相关内容进行补充学习。Transformer 突破了 RNN 模型不能并行计算的限制,CNN需要增加卷积层数来扩大视野,RNN需要从1到n逐个进行计算,而self-attention只需要一步矩阵计算就可以。
2024-07-28 13:42:55 312
原创 2024/7/21周报
本文考虑了基于LSTM的多变量时间序列预测的增强。我们提出了一种监督学习方法来构建单一的时间序列数据来表示旅游需求的影响,结合预期的原因,如天气条件和连续的假期。实际数据的实验结果表明,我们的方法的有效性。我们的方法有潜力进一步提高当前的质量。对于未来的任务,我们提出了一个新的LSTM模型,它更适合于多变量时间序列,并改进了学习算法来构建事件影响信号。
2024-07-20 23:00:42 913
原创 2024/7/14周报
用于多变量时间序列预测的多尺度自适应图神经网络多变量时间序列(MTS)预测在智能应用的自动化和最优化中发挥着重要作用。这是一项具有挑战性的任务,因为我们需要同时考虑复杂的变量内依赖关系和变量间依赖关系。已有的工作仅在单个变量间依赖关系的帮助下学习时态模式。然而,在许多真实的MT中,存在着多尺度的时间模式。单一的变量间依赖关系使得模型更愿意学习一种突出的和共享的时态模式。本文提出了一种多尺度自适应图神经网络(MAGNN)来解决上述问题。
2024-07-07 19:17:10 686
原创 2024/6/30周报
本周阅读了一篇关于TCN和LSTM进行光伏功率预测的文章,本文提出了一种利用LSTM-TCN预测光伏功率的新模型。它由长短期记忆和时间卷积网络模型之间的组合组成。LSTM用于从输入数据中提取时态特征,然后与TCN结合,在特征和输出之间建立连接。与LSTM、TCN相比,平均绝对误差分别下降了、秋季8.47%,14.26%、冬季6.91%,15.18%、春季10.22%,实验结果表明,所提出的模型优于LSTM和TCN模型。
2024-06-30 16:58:12 345
原创 2024/6/23周报
本周阅读的文献《W-WaveNet: A multi-site water quality prediction model incorporating adaptive graph convolution and CNN-LSTM》中,提出了一个由WaveNet网络、LSTM网络和自适应图卷积网络相结合的多站点水污染预测方法W-WaveNet。其中自适应图卷积模型用于自动学习各站点之间的相关性,WaveNet网络用于提取局部特征,LSTM网络用于建模数据特征依赖关系。
2024-06-22 19:02:39 270
原创 2024/6/16周报
本周阅读了一篇基于注意力图神经网络的污染物传输建模与源属性的文章,文中作者引入了一种新的基于注意力的图神经网络(aGNN),用于利用有限的监测数据对污染物传输进行建模,并量化污染物源(驱动因素)及其传播(结果)之间的因果关系。在涉及异质含水层中不同监测网络的五个合成案例研究中,aGNN在多步预测中表现优于基于LSTM(长短期记忆)和基于CNN(卷积神经网络)的方法。基于aGNN的解释性分析量化了每个污染源的影响,这已经通过基于物理的模型进行了验证,结果一致,R2值超过92%。此外,还对文章的代码进行复现。
2024-06-16 20:28:06 1127
原创 2024/6/9周报
本周阅读了题为Large-scale water quality prediction with integrated deep neural network的论文。这项工作提出了一种基于长期短期记忆的编码器-解码器神经网络和 Savitzky-Golay 滤波器的混合模型。其中,Savitzky-Golay滤波器可以消除水质时间序列中的潜在噪声,长短期记忆可以研究复杂水环境中的非线性特性。这样就提出了一个集成模型并有效地获得了统计特征。基于真实数据的实验证明,其预测性能优于几个最先进的同行。This we
2024-06-09 17:41:29 831
原创 2024/6/2周报
本周阅读了一篇基于多时间嵌入的混合注意机制的顺序推荐的文章,为了解决以前模型的局限性,文章提出了MEANTIME(混合的Attention机制与多时间嵌入),它采用多种类型的时间嵌入,旨在捕捉各种模式,从用户的行为序列,和一个注意力结构,充分利用这种多样性。此外,还对self-attention的内容进行进一步的补充学习、复习。本周学习了transformer中的核心机制self-attention并进行手动模拟推导,这有利于进一步理解transformer。
2024-06-02 19:38:07 804
原创 2024/5/26周报
日光温室为我国北方反季节作物的生产提供了有利的气候环境。温室温湿度是影响作物生长发育的重要环境因子,因此,对温室温湿度的预测至关重要。在这项研究中,我们构建了一个前馈注意机制-长短期记忆(FAM-LSTM)模型,用于日光温室温度和湿度的多步预测。FAM-LSTM模型考虑了影响作物生长的内部和外部环境因素,这些因素包括温度、湿度、光照、土壤温度和土壤湿度。然后,我们进行了相应的实验,使用该模型在12,24,36和48小时的预测层温度和湿度的预测。与其他模型相比,FAM-LSTM模型因其高精度而脱颖而出。
2024-05-26 18:03:09 908
原创 2024/5/12周报
本周阅读了一篇基于LSTM-Autoencoder模型的多任务空气质量预测的文章,文章提出了一种长短期记忆(LSTM)自编码器多任务学习模型,用于预测城市多个地点的PM2.5时间序列。该模型能够隐式地、自动地挖掘不同站点污染物之间的内在关联性,并充分利用监测站的气象信息来提高性能。此外,还对self-attention进行学习和代码实现。self-attention需要的参数少,相比于 CNN、RNN ,其复杂度更小,参数也更少。所以对算力的要求也就更小。
2024-05-12 11:08:37 950
原创 2024/5/5周报
本周阅读的文献中提出了一种基于趋势分量和随机增量特征的ARIMA模型与K-means聚类模型相结合的水质预测方法,将ARIMA模型与聚类模型相结合,可以弥补单一ARIMA模型的不足。通过聚类分析发现可能存在的影响因素,提高对于具有随机特征的数据预测精度。文献中用到的两种机器学习方法,一是AR模型和MA模型结合的ARIMA模型,能够利用数据本身的历史信息来预测未来,二是K-means聚类分析方法,能够把相似的数据样本分到一组(簇)。最后实现ARIME的代码以及对上周自注意力机智的位置编码内容进行补充学习。
2024-05-05 17:33:29 846
原创 2024/4/21周报
本周阅读了一篇基于CNN-LSTM黄金价格时间序列预测模型的文章,文中提出了一种新的深度学习预测模型,用于准确预测黄金价格和走势。该模型利用卷积层提取有用知识和学习时间序列数据内部表示的能力,以及长短期记忆(LSTM)层识别短期和长期依赖关系的有效性。实验分析表明,利用LSTM层沿着额外的卷积层可以显著提高预测性能。此外,还使用LSTM以及GRU模型进行时间预测训练,并进行对比。定义GRU以及LSTM模型。
2024-04-21 14:19:57 1032
原创 2024/4/14周报
本周阅读了一篇以跨尺度注意力为基础的通用视觉Transformer器的文章,文中提出了跨尺度嵌入层(CEL)和长短距离注意(LSDA)。不仅减少了计算负担,而且在嵌入中同时保留了小尺度和大尺度特征。通过以上两种设计,实现了跨尺度注意。大量的实验表明,CrossFormer在图像分类、对象检测、实例分割和语义分割任务上优于其他视觉转换器。此外,对CrossFormer进行更近一步的学习。
2024-04-14 17:24:42 1162
原创 2024/4/7周报
用于统计机器翻译的RNN编码器-解码器学习短语表示文中提出了一种新的神经网络模型称为RNN编码器-解码器,由两个递归神经网络(RNN)构成。一个RNN将符号序列编码为固定长度的向量表示,另一个将表示解码为另一个符号序列。通过使用由RNN编码器-解码器计算的短语对的条件概率作为现有对数线性模型中的附加特征,使得统计机器翻译系统的性能得到改善。
2024-04-07 11:41:37 609
原创 2024/3/17周报
本周阅读了Transformer的开山之作《Attention Is All You Need》。Transformer完全基于注意力机制,完全免除了递归和卷积。在两个机器翻译任务上的实验表明,Transformer模型在质量上是上级的,同时具有更好的并行性,并且训练时间也更少。此外,还对Transformer模型的原理进行了深入学习和研究。Transformer的优势在于它能够并行计算,从而大大提高了训练和推理的效率。
2024-03-16 15:39:35 764
原创 2024/3/10周报
本周阅读了一篇关于基于YOLO和深度模糊LSTM网络的篮球动作识别的论文,文章中作者使用YOLO模型检测球员动作,使用LSTM和模糊层的组合用于执行最终分类,该模型的优越性在SpaceJam和Basketball-51数据集上进行了验证。此外,还对模糊逻辑系统进行进一步的补充学习。人工神经网络具有较强的自学习和联想功能能力,人工干预少,精度较高,对专家知识的利用也较好;而模糊计算的特点有推理过程容易理解、专家知识利用较好、对样本的要求较低等。二者结合,有时能得到意想不到的好处。
2024-03-08 15:48:42 955 1
原创 2024/1/28周报
本周阅读了一篇基于深度长短期记忆的农产品价格预测模型的文章,文章提出了一种基于深度长短期记忆(DLSTM)的模型。DLSTM模型同时利用递归架构和深度学习方法,在捕获非线性和易失性模式方面具有优势。利用国际玉米和棕榈油月度价格序列,比较了DLSTM模型与传统时延神经网络(TDNN)和ARIMA模型的价格预测能力。实证结果表明,开发的DLSTM模型优于其他模型的各种预测评价标准,在预测这些月度价格序列的方向变化方面也显示出优于其他模型的优势。此外还对attention机制进行理论学习和代码实现。
2024-01-27 20:17:40 1002
原创 2024/1/21周报
本周阅读了一篇基于LSTM的深度学习模型用于长期旅游需求预测的文章,作者所提出的预测模型是基于长短期记忆网络(LSTM),它能够整合来自外生变量的数据。通过希腊三家酒店真实的数据的评估,结果表明,与所有三家酒店的知名国家的最先进的方法相比,所提出的模型的上级预测性能。此外,还对GRU进行推导和代码实现。本周对GRU的数学原理进行推导和补充学习,GRU也是基于RNN结构,并对LSTM进行简化。值得注意的是,GRU和LSTM适用于不同的场景,GRU训练速度要快于LSTM。
2024-01-21 15:37:24 883
原创 2024/1/14周报
本周阅读了一篇基于CEEMDAN-LSTM的金融时间序列预测模型的文章,文中提出了一种基于自适应噪声的完全集成经验模式分解(CEMDAN)和长短期记忆(LSTM)网络的金融时间序列预测模型,经过CEEMDAN分解、小波阈值去噪和重构,得到去噪后的信号。使用去噪信号代替原始信号作为LSTM网络的输入,可以获得更准确的最终预测结果,此外还对GRU的理论内容进行进一步的学习。GRU是LSTM的简化轻量版,训练速度快于LSTM,但并不意味着任何场景都优于LSTM,还要具体问题具体分析。
2024-01-13 16:15:38 1081
原创 2024/1/7周报
本周阅读了一篇基于多时间嵌入的混合注意机制的顺序推荐的文章,为了解决以前模型的局限性,文章提出了MEANTIME(混合的Attention机制与多时间嵌入),它采用多种类型的时间嵌入,旨在捕捉各种模式,从用户的行为序列,和一个注意力结构,充分利用这种多样性。此外,还对self-attention的内容进行进一步的补充学习、复习。本周继续学习了transformer中的核心机制self-attention并进行手动模拟推导,这有利于进一步理解transformer。
2024-01-05 21:45:18 864
原创 2023/12/24周报
本周阅读了一篇关于降水序列预测的论文,文中制定了降水临近预报的时空序列预测问题,其中输入和预测目标都是时空序列,通过扩展完全连接的LSTM(FC-LSTM),使其在输入到状态和状态到状态的转换中都具有卷积结构,提出了卷积LSTM。最后对卷积LSTM理论进行学习,并使用代码实现卷积LSTM。
2023-12-24 15:24:45 988
原创 2023/12/17周报
本周阅读了一篇关于注意力机制相关的文章,文中提到了现有的方法都没有明确考虑用户当前行为对其下一步行动的影响。于是,论文中提出了一种新的短期注意力优先级模型作为补救措施,该模型能够从会话上下文的长期记忆中捕获用户的一般兴趣,同时考虑到用户最近点击的短期记忆中的当前兴趣。此外attention的相关内容进行进一步的学习。注意力机制类似于人类的视觉注意力机制,通过扫描全局图像,获取需要重点关注的目标区域,忽视其他无关信息是在计算能力有限的情况下,将计算资源分配给更重要的任务,同时解决信息超载问题。
2023-12-17 16:46:10 50
原创 2023/12/10周报
本周阅读了一篇关于循环神经网络的论文,论文中提出了一种新的循环神经网络架构,它使得同一层中的神经元彼此独立,并且可以跨层连接。文中的IndRNN可以很容易被调节,以防止梯度爆炸和梯度消失的问题,同时网络可以学习长期依赖性的任务,并且还可以堆叠多个IndRNN,以构建比现有RNN更深的网络。此外,还继续对LSTM进行推导和代码学习。本周对RNN及LSTM等知识进行复习和进一步的学习,下周将对时序模型的文章作进一步的阅读。
2023-12-09 14:33:23 77
原创 2023/12/3周报
本周阅读了一篇关于循环神经网络的论文,论文旨在探索将RNN扩展到深度RNN的不同方法。论文通过对RNN结构的理解和分析,发现从三个方面入手可以使网络变得更深, 输入到隐含函数,隐含到隐含转换函数以及隐含到输出函数。基于此类观察结果,论文提出了几种新颖的深度RNN结构,并通过实验验证了深度RNN优于传统的浅层RNN。
2023-12-03 18:46:29 59
原创 2023/11/26周报 SVM 1
本周阅读了一篇基于 SVM 的低空飞行冲突探测改进模型的论文,开始对SVM分类方法进行学习,在SVM的基础上,对其进行改进,在低空飞行冲突探测中能得到更好的效果。在深度学习上,了解SVM的基本特点,以及如何进行求解超平面。本周是对SVM进行了初步的学习,下周从SVM的核函数部分开始学习,将SVM应用于非线性数据集。
2023-12-03 18:05:16 99
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人