2025/1/5周报

摘要

本周继续研究基于优化算法的污水处理多目标优化问题,研究粒子群算法的优化过程,即通过构建particle类,适应度函数和PSO执行函数进行优化。此外还仔细阅读分析了一篇污水处理多目标优化方法的文章,该文章使用BP神经网络和差分算法相结合的方式,在优化能耗成本和出水水质的同时,降低高微生物风险的比例,从开环控制的 67.31% 下降到 46.36%,减少了将近 20.95%

Abstract

This week, I continued studying the multi-objective optimization problem of wastewater treatment based on optimization algorithms, focusing on the optimization process of the Particle Swarm Optimization (PSO) algorithm. This involved constructing the Particle class, fitness function, and PSO execution function for optimization. Additionally, I carefully read and analyzed an article on a multi-objective optimization method for wastewater treatment. The article employed a combination of BP neural networks and differential algorithms to optimize energy consumption, cost, and effluent quality, while simultaneously reducing the proportion of high microbial risk. The approach lowered the open-loop control risk from 67.31% to 46.36%, achieving a reduction of nearly 20.95%.

粒子群算法

粒子群算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,由美国学者詹姆斯·肯尼迪(James Kennedy)和罗伯特·埃伯哈特(Russ Eberhart)于1995年提出。受鸟群觅食行为的启发,粒子群算法模拟了群体中个体(即“粒子”)之间的信息共享与协作,通过不断调整自身的位置和速度,以寻找问题的最优解。

1.工作原理

PSO算法主要包括以下几个关键步骤:

  1. 初始化:在解空间中随机生成一群粒子,每个粒子代表一个可能的解决方案。每个粒子具有位置和速度两个属性。
  2. 评估适应度:根据优化目标函数,评估每个粒子的适应度值,以衡量其解决方案的优劣。
  3. 更新个体最佳和全局最佳
    • 个体最佳(pBest):记录每个粒子在历史搜索过程中遇到的最佳位置。
    • 全局最佳(gBest):记录整个群体中所有粒子所经历过的最佳位置。
  4. 调整速度和位置
    • 粒子的速度根据其当前速度、到个体最佳位置的认知部分(cognitive component),以及到全局最佳位置的社会部分(social component)进行更新。公式如下:

v i ( t + 1 ) = w ⋅ v i ( t ) + c 1 ⋅ r 1 ⋅ ( p B e s t i − x i ( t ) ) + c 2 ⋅ r 2 ⋅ ( g B e s t − x i ( t ) ) v_{i}(t+1) = w \cdot v_{i}(t) + c_1 \cdot r_1 \cdot (pBest_{i} - x_{i}(t)) + c_2 \cdot r_2 \cdot (gBest - x_{i}(t)) vi(t+1)=wvi(t)+c1r1(pBestixi(t))+c2r2(gBestxi(t))

其中, w w w 是惯性权重, c 1 c_1 c1 c 2 c_2 c2 是加速常数, r 1 r_1 r1 r 2 r_2 r2 是随机数。
- 粒子的位置则根据更新后的速度进行调整:

x i ( t + 1 ) = x i ( t ) + v i ( t + 1 ) x_{i}(t+1) = x_{i}(t) + v_{i}(t+1) xi(t+1)=xi(t)+vi(t+1)
5. 迭代:重复评估、更新和调整的过程,直到满足停止条件(如达到最大迭代次数或适应度达到预定阈值)。

2.优点

  • 简单易实现:算法结构简单,参数较少,易于编程实现。
  • 全局搜索能力强:通过群体协作,能够有效避免陷入局部最优。
  • 适用性广:可应用于连续和离散的优化问题,以及多目标优化等复杂场景。

3.应用领域

粒子群算法广泛应用于各个领域,包括但不限于:

  • 工程优化:结构设计、参数优化等。
  • 机器学习:神经网络训练、特征选择等。
  • 经济与管理:资源分配、供应链优化等。
  • 图像处理:图像分割、模式识别等。

4.变种与改进

随着研究的深入,PSO算法衍生出了许多变种和改进版本,以增强其性能和适用性。例如:

  • 离散粒子群优化(Discrete PSO):适用于离散优化问题。
  • 多目标粒子群优化(Multi-objective PSO):同时优化多个目标函数。
  • 自适应粒子群优化(Adaptive PSO):动态调整算法参数,提高搜索效率。

粒子群算法凭借其简单高效的特性,成为了优化领域中重要的工具之一。通过模拟自然界中群体协作的机制,PSO能够在复杂的搜索空间中迅速定位最优解。随着计算能力的提升和理论研究的深入,粒子群算法在未来有望在更多领域发挥更大的作用。

文献阅读

1. 背景与问题

污水处理是环境治理中备受关注的领域,尤其是在城市化进程加快的背景下,污水处理的需求不断增加。污水处理过程涉及复杂的工业系统,包括物理和微生物的生化反应,其特点是非线性、时变性和存在不确定性干扰。因此,建立精准的污水处理模型具有较大挑战。这导致优化控制污水处理过程存在多重困难,包括:

  • 难以建立精确模型。
  • 微生物相关问题(如污泥膨胀、泡沫和上浮)的处理效率较低,系统易受外部环境波动(如水质、气候、毒性工业水流入等)的影响。
  • 当前方法大多集中于运行成本和出水水质的优化,而忽略了微生物风险的安全性问题。

因此,开发一种能够同时兼顾能耗、出水水质和微生物风险的优化控制方法成为必要。

2. 发明目的

本发明提出了一种基于多目标优化的污水处理控制方法和系统,旨在解决现有方法中未充分考虑微生物风险的问题。具体目标包括:

  1. 在优化能耗成本和出水水质的同时,降低高微生物风险的比例。
  2. 提高污水处理系统的安全性与稳定性。
  3. 减少因污泥沉降问题导致的额外成本和损失。
  4. 改善模型的泛化能力,减少计算复杂度。

3. 方法与实现

在这里插入图片描述

该发明的方法分为六个步骤,每一步均有明确的目标和实施细节,从数据采集到模型构建、优化求解再到控制实现,构成了一个完整的多目标优化控制框架,确保能耗成本、出水水质和微生物风险之间的平衡。

3.1 数据采集与变量选取

该方法以活性污泥一号基准仿真模型(Benchmark Simulation Model No.1, BSM1)为基础,通过动态仿真过程模拟污水处理的生化反应。BSM1包含 5 个完全混合式生化反应池1 个十层沉淀池,每个反应池用于模拟特定的微生物代谢过程和反应动力学。

在变量选取中,重点关注对污泥沉降影响较大的变量,包括:

  • 食微比(F/M):反映了反应池中微生物与可用有机物的比值。
  • 污泥龄(SRT):衡量活性污泥在系统中的停留时间。
  • 碳氮比(BOD5/N):表示生化需氧量(BOD5)与总氮浓度的比值。
  • 反应池溶解氧(SO₃):表征氧化还原条件对微生物活性的影响。
  • 硝态氮(SNO₅):反映氮循环中硝化和反硝化过程的效果。

这些变量通过如下公式定义和计算:

  1. 食微比(F/M)

F/M = Q i ⋅ BOD 5 V ⋅ X \text{F/M} = \frac{Q_i \cdot \text{BOD}_5}{V \cdot X} F/M=VXQiBOD5

其中: Q i Q_i Qi 是进水流量; BOD 5 \text{BOD}_5 BOD5 是五日生化需氧量; V V V 是反应池体积; X X X 是反应池中的活性污泥浓度。

  1. 污泥龄(SRT)

SRT = X ⋅ V Q w ⋅ X w \text{SRT} = \frac{X \cdot V}{Q_w \cdot X_w} SRT=QwXwXV

其中: Q w Q_w Qw 是排泥流量; X w X_w Xw 是排泥污泥浓度。

  1. 碳氮比(BOD5/N)

BOD 5 / N = BOD 5 TN \text{BOD}_5/\text{N} = \frac{\text{BOD}_5}{\text{TN}} BOD5/N=TNBOD5

其中, TN \text{TN} TN 是总氮浓度。

通过这些公式计算的变量数据,包括进水流量( Q i Q_i Qi)、能耗成本(EC)、出水水质(EQ)和微生物风险(MR),为后续的预测模型构建和优化提供了输入基础。

3.2 BP神经网络建立稳态预测模型

为了有效模拟能耗成本(EC)、出水水质(EQ)和微生物风险(MR)之间的非线性关系,该方法采用基于 BP(Back Propagation)神经网络的稳态预测模型。BP 神经网络结构设计如下:

  • 输入层:输入变量为溶解氧设定值( S O 3 , s p SO_{3,sp} SO3,sp)、污泥龄设定值( S R T s p SRT_{sp} SRTsp)和进水流量( Q i Q_i Qi)。
  • 隐藏层:负责处理输入和输出之间的非线性映射,使用转换函数增强模型的拟合能力。
  • 输出层:输出变量为能耗成本( y E C y_{EC} yEC)、出水水质( y E Q y_{EQ} yEQ)和微生物风险( y M R y_{MR} yMR)。

BP 神经网络的数学表达如下:

  1. 隐藏层的神经元输出:

h i = f ( ∑ j = 1 n w i j x j + b i ) h_i = f\left(\sum_{j=1}^{n} w_{ij} x_j + b_i\right) hi=f(j=1nwijxj+bi)

其中: w i j w_{ij} wij 是输入变量 x j x_j xj 与隐藏层神经元 h i h_i hi 的连接权重; b i b_i bi 是隐藏层神经元的偏置; f ( ⋅ ) f(\cdot) f() 是激活函数(如 tansig、logsig 或 softmax)。

  1. 输出层的神经元输出:

y k = f ( ∑ i = 1 m w k i h i + b k ) y_k = f\left(\sum_{i=1}^{m} w_{ki} h_i + b_k\right) yk=f(i=1mwkihi+bk)

其中:
- w k i w_{ki} wki 是隐藏层神经元 h i h_i hi 与输出变量 y k y_k yk 的连接权重;
- b k b_k bk 是输出层神经元的偏置。

通过训练 BP 神经网络,获得能耗成本( y E C y_{EC} yEC)、出水水质( y E Q y_{EQ} yEQ)和微生物风险( y M R y_{MR} yMR)的稳态预测模型。

3.3 构建多目标优化函数

基于稳态预测模型,优化目标包括:

  1. 能耗成本(EC)

J E C = f E C ( u , d ) J_{EC} = f_{EC}(u, d) JEC=fEC(u,d)

其中:
- u u u 是决策变量(溶解氧 S O 3 , s p SO_{3,sp} SO3,sp 和污泥龄 S R T s p SRT_{sp} SRTsp);
- d d d 是进水流量( Q i Q_i Qi)。

  1. 出水水质(EQ)

J E Q = f E Q ( u , d ) J_{EQ} = f_{EQ}(u, d) JEQ=fEQ(u,d)

  1. 微生物风险(MR)

J M R = f M R ( u , d ) J_{MR} = f_{MR}(u, d) JMR=fMR(u,d)

多目标优化函数的总体目标为:

min ⁡ J ( u ) = [ J E C , J E Q , J M R ] \min J(u) = \left[J_{EC}, J_{EQ}, J_{MR}\right] minJ(u)=[JEC,JEQ,JMR]

约束条件:

u L ≤ u ≤ u U u_L \leq u \leq u_U uLuuU

3.4 多目标差分进化算法求解优化

通过多目标差分进化算法(MOEA),对优化函数进行求解,获得帕累托最优解集。MOEA 的关键步骤包括:

  1. 初始化父代种群:随机生成包含 N N N 个个体的种群。
  2. 适应度计算:评估每个个体在三个目标函数上的表现。
  3. 变异与交叉:通过种群内个体间的信息交换生成子代。
  4. 选择非支配解:基于帕累托最优准则筛选个体,构成帕累托前沿。

3.5 最优决策变量筛选

从帕累托最优解集中筛选决策变量,目标是平衡能耗、出水水质和微生物风险。定义代价函数:

C ( x ) = ω E C J E C + ω E Q J E Q + ω M R J M R C(x) = \omega_{EC} J_{EC} + \omega_{EQ} J_{EQ} + \omega_{MR} J_{MR} C(x)=ωECJEC+ωEQJEQ+ωMRJMR

其中:

  • ω E C \omega_{EC} ωEC ω E Q \omega_{EQ} ωEQ ω M R \omega_{MR} ωMR 分别是三个目标的权重。

选取代价函数最小的解为最终优化解。


3.6 实时控制

在这里插入图片描述
在这里插入图片描述

通过抗积分饱和 PI 控制器对优化设定值进行实时跟踪。控制器的公式如下:

u ( k ) = K p e ( k ) + K i ∑ i = 0 k e ( i ) u(k) = K_p e(k) + K_i \sum_{i=0}^{k} e(i) u(k)=Kpe(k)+Kii=0ke(i)

其中:

  • K p K_p Kp 是比例系数;
  • K i K_i Ki 是积分系数;
  • e ( k ) e(k) e(k) 是当前误差。

PI 控制器避免设定值长时间偏离目标,确保实时优化。

4. 系统实现

发明还提供了相应的硬件与软件系统实现:

  • 硬件:系统包括处理器、存储器、通信端口和输入输出设备,用于数据处理与优化控制。
  • 软件:通过程序指令实现上述方法的具体步骤,包括神经网络训练、优化函数求解和实时控制。
  • 系统可在计算机可读存储介质中保存并执行。

5. 实际效果与验证

5.1 仿真验证

为了验证所提出污水处理多目标优化控制方法的有效性,研究设计了三种不同的仿真方案进行对比分析,每种方案均在相同的实验条件下运行,以确保数据的可比性和分析结果的客观性。这三种方案分别为:
在这里插入图片描述

  1. 开环控制(OLC):在这一方案中,溶解氧(DO)和污泥龄(SRT)的设定值保持固定,不进行任何优化控制。KLa(氧传递系数)和Qw(废弃物排放流量)分别设定为固定值 240d⁻¹ 和 385m³·d⁻¹。这种方法代表了最基本的污水处理系统运行模式,未使用任何优化手段。

  2. 基于能耗和出水水质优化(CQ-OC):该方案在优化过程中仅关注能耗成本(EC)和出水水质(EQ)两个目标,忽略微生物风险(MR)的考虑。在优化中设定权重值,能耗成本权重为0.2,出水水质权重为0.8。这种方式虽然能够降低运行成本并改善出水水质,但对潜在的微生物沉降问题未加以应对,容易导致微生物相关的风险增加。

  3. 综合优化(CQR-OC):这是本文提出的多目标优化控制方案,在优化过程中综合考虑了能耗成本、出水水质以及微生物风险三大目标因素。权重设置为:能耗成本(ωEC = 0.2×10⁻⁴)、出水水质(ωEQ = 0.8×10⁻⁴)和微生物风险(ωMR = 1)。这一方法通过平衡各优化目标,有效提高了系统的整体运行安全性和性能。

仿真结果分析

  • 能耗成本和出水水质:与开环控制(OLC)相比,CQ-OC方案成功降低了能耗成本和出水水质指标,分别减少了 2.33%2.06%,证明了优化方法对经济性和水质的显著改进。然而,CQ-OC未考虑微生物风险,导致高微生物风险比例上升了 9.72%。这表明单纯优化经济性和水质可能以牺牲系统安全性为代价。

  • 综合安全性和性能:在综合优化(CQR-OC)方案下,能耗成本和出水水质相比OLC略有增加,分别上升了 2.04%2.81%,但这种小幅提升可以接受。高微生物风险比例显著降低,从开环控制的 67.31% 下降到 46.36%,减少了将近 20.95%。这说明综合优化方法通过考虑微生物风险,极大提升了系统的安全性,避免了污泥沉降等问题带来的运行失控风险。

结论:
通过仿真对比,CQ-OC方案展示了运行成本和出水水质优化的有效性,但存在忽视安全性的问题。而CQR-OC方案在平衡多目标的基础上,不仅保障了经济性和水质的合理水平,还显著改善了系统的安全性能。这种多目标优化方法在污水处理中的优势得以体现,尤其适合对安全性要求较高的处理场景。

5.2 神经网络预测精度

为了进一步验证稳态预测模型的准确性,本研究对能耗成本(EC)、出水水质(EQ)和微生物风险(MR)三个BP神经网络模型的预测性能进行了系统评估。采用的评估指标为 R²(判定系数)RMSE(均方根误差),其中:

  • 指标反映了模型的拟合程度,值越接近1,表明模型对数据的解释能力越强。
  • RMSE 反映了预测值与实际值之间的偏差,值越小,表明模型的预测精度越高。
    在这里插入图片描述

实验结果表明:

  • 能耗成本模型的 R² = 0.9973,RMSE为 26.0864
  • 出水水质模型的 R² = 0.9928,RMSE为 972.4917
  • 微生物风险模型的 R² = 0.9618,RMSE为 0.0377

这表明,三种模型均具备极高的预测精度,尤其在能耗成本和出水水质方面,拟合效果非常理想。虽然微生物风险模型的拟合程度略低于前两者,但R²仍达到了0.96以上,足以满足优化计算的要求。

结论:
BP神经网络模型能够精准地预测系统运行中的能耗成本、出水水质和微生物风险,为后续的多目标优化提供了可靠的基础数据支持。这种模型的非线性映射能力及泛化性能,使其能够适应复杂的污水处理动态过程,为方法的实际应用奠定了理论基础。

6. 优势与创新

  • 多目标优化:同时优化能耗、水质和微生物风险,解决了传统方法的局限性。
  • 安全性提升:有效降低高微生物风险比例,提高系统稳定性。
  • 成本控制:通过优化控制减少污泥沉降带来的额外成本。
  • 模型泛化能力强:BP神经网络具备良好的非线性映射能力,适应不同污水处理场景。

总结

结合数据驱动的神经网络预测模型和多目标优化算法,不仅改善了出水水质和能耗,还显著提升了系统安全性。系统的实时控制能力强、计算复杂度低,具有良好的实际应用潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值