【PyTorch简介】5.Automatic Differentiation with `torch.autograd` 自动微分与`torch.autograd`

Automatic Differentiation with torch.autograd 自动微分与torch.autograd


在训练神经网络时,最常用的算法是 back propagation 反向传播。在该算法中,根据损失函数相对于给定参数的 gradient 梯度 来调整参数(模型权重) 。损失函数计算神经网络产生的预期输出和实际输出之间的差异。目标是使损失函数的结果尽可能接近于零。该算法通过神经网络向后遍历来调整权重和偏差来重新训练模型。这就是为什么它被称为反向传播。随着时间的推移重新训练模型以将损失减少到 0 的这种前后过程称为梯度下降。

为了计算这些梯度,PyTorch 有一个名为torch.autograd的内置微分引擎。它支持任何计算图的梯度自动计算。

考虑最简单的一层神经网络,具有输入x、参数wb,以及一些损失函数。它可以通过以下方式在 PyTorch 中定义:

import torch

x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

Tensors, Functions and Computational graph 张量、函数和计算图

该代码定义了以下计算图

在这里插入图片描述

在这个网络中,wb是我们需要优化的 parameters 参数。因此,我们需要能够计算损失函数相对于这些变量的梯度。为了做到这一点,我们设置了这些张量的requires_grad属性。

笔记
您可以在创建张量时设置requires_grad的值,也可以稍后使用x.requires_grad_(True)方法设置。

实际上,我们应用于张量来构造计算图的函数是类Function的对象。该对象知道如何计算 forward direction 前向函数,以及如何在 backward propagation 向后传播 步骤中计算其导数。对反向传播函数的引用存储在张量的grad_fn属性中。您可以在Function 文档中找到更多信息。

print(f"Gradient function for z = {z.grad_fn}")
print(f"Gradient function for loss = {loss.grad_fn}")

Out:

Gradient function for z = <AddBackward0 object at 0x7f083264cd60>
Gradient function for loss = <BinaryCrossEntropyWithLogitsBackward0 object at 0x7f083264eec0>

Computing Gradients 计算梯度

为了优化神经网络中参数的权重,我们需要计算损失函数关于参数的导数。即,在xy为固定值的情况下,计算 ∂ l o s s ∂ w \frac {\partial loss}{\partial w} wloss ∂ l o s s ∂ b \frac {\partial loss}{\partial b} bloss。为了计算这些导数,我们调用 loss.backward() ,然后从w.gradb.grad检索相应的值:

loss.backward()
print(w.grad)
print(b.grad)

Out:

tensor([[0.3313, 0.0626, 0.2530],
        [0.3313, 0.0626, 0.2530],
        [0.3313, 0.0626, 0.2530],
        [0.3313, 0.0626, 0.2530],
        [0.3313, 0.0626, 0.2530]])
tensor([0.3313, 0.0626, 0.2530])

Note 笔记:
我们只能获取计算图的叶节点的grad属性,其requires_grad属性设置为True。对于我们图中的其他节点,梯度将不可用。
出于性能原因,我们只能在给定图上使用 backward执行一次梯度计算。如果我们需要在同一个图上进行多次backward调用,我们需要将retain_graph=True传递给backward调用。

Disabling Gradient Tracking 禁用梯度跟踪

默认情况下,所有张量都会设置requires_grad=True,来跟踪其计算历史并支持梯度计算。然而,在某些情况下,我们不需要这样做。例如,当我们训练完模型,并且只想将其应用于某些输入数据时,即我们只想通过网络进行 forward computation *前向计算。*我们可以通过使用torch.no_grad()块包围我们的计算代码,来停止跟踪计算:

z = torch.matmul(x, w)+b
print(z.requires_grad)

with torch.no_grad():
    z = torch.matmul(x, w)+b
print(z.requires_grad)

Out:

True
False

获得相同结果的另一种方法是在张量上使用detach()方法:

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)

Out:

False

您可能想要禁用梯度跟踪的原因有:

  • 将神经网络中的某些参数标记为 frozen parameters 冻结参数
  • 当您仅进行前向传递时, speed up computations 加快计算速度,因为对不跟踪梯度的张量进行计算会更有效。

More on Computational Graphs 有关计算图的更多信息

从概念上讲,在由Function 对象组成的 directed acyclic graph 有向无环图 (DAG) 中,autograd 保存数据(张量)和所有执行的操作(以及生成的新张量)的记录 。在这个 DAG 中,叶子是输入张量,根是输出张量。通过从根到叶追踪该图,您可以使用链式法则自动计算梯度。

在前向传递中,autograd 同时执行两件事:

  • 运行请求的操作,来计算结果张量
  • 在 DAG 中,维护操作的 gradient function 梯度函数。

当在 DAG 根上调用.backward()时,后向传递开始。autograd然后:

  • 计算每个.grad_fn的梯度,
  • 在各自张量的.grad属性中,将累积它们
  • 使用链式法则,一直传播到叶张量。

Note 笔记

在 PyTorch 中,DAG 是动态的

需要注意的重要一点是,图是从头开始重新创建的。每次调用 .backward()后,autograd 都会开始填充新图。这正是允许您在模型中使用控制流语句的原因。如果需要,您可以在每次迭代时更改形状、大小和操作。

Optional Reading: Tensor Gradients and Jacobian Products 可选阅读:张量梯度和雅可比积

在许多情况下,我们有一个标量损失函数,并且需要计算某些参数的梯度。然而,在某些情况下,输出函数是任意张量。在这种情况下,PyTorch 允许您计算所谓的 Jacobian product 雅可比积,而不是实际的梯度。

对于向量函数 y ⃗ = f ( x ⃗ ) \vec y = f(\vec x) y =f(x ) ,当 x ⃗ = < x 1 , … , x n > \vec x = <x_1,\dots,x_n> x =<x1,,xn> y ⃗ = < y 1 , … , y m > \vec y = <y_1,\dots,y_m> y =<y1,,ym> 时,相对于 x ⃗ \vec x x y ⃗ \vec y y 的梯度,是由Jacobian matrix 雅可比矩阵 计算的,它的元素 J i j J_{ij} Jij 包含 ∂ y i ∂ x i \frac {\partial y_i}{\partial x_i} xiyi

J = ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x n ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ⋯ ∂ y m ∂ x n ) J= \begin{pmatrix} \frac {\partial y_1}{ \partial x_1} & \cdots & \frac {\partial y_1}{ \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac {\partial y_m}{ \partial x_1} & \cdots & \frac {\partial y_m}{ \partial x_n} \end{pmatrix} J= x1y1x1ymxny1xnym

对于一个给定的输入向量 v = ( v 1 … v m ) v = (v_1 \dots v_m) v=(v1vm) ,PyTorch 允许您计算 Jacobian product 雅可比积 v T ⋅ J v^T \cdot J vTJ,而不是计算雅可比矩阵本身。这是通过把 v v v 作为参数,调用backward,来实现的。 v v v 的大小应与原始张量的大小相同,我们要计算其乘积:

inp = torch.eye(5, requires_grad=True)
out = (inp+1).pow(2)
out.backward(torch.ones_like(inp), retain_graph=True)
print("First call\n", inp.grad)
out.backward(torch.ones_like(inp), retain_graph=True)
print("\nSecond call\n", inp.grad)
inp.grad.zero_()
out.backward(torch.ones_like(inp), retain_graph=True)
print("\nCall after zeroing gradients\n", inp.grad)

Out:

First call
 tensor([[4., 2., 2., 2., 2.],
        [2., 4., 2., 2., 2.],
        [2., 2., 4., 2., 2.],
        [2., 2., 2., 4., 2.],
        [2., 2., 2., 2., 4.]])

Second call
 tensor([[8., 4., 4., 4., 4.],
        [4., 8., 4., 4., 4.],
        [4., 4., 8., 4., 4.],
        [4., 4., 4., 8., 4.],
        [4., 4., 4., 4., 8.]])

Call after zeroing gradients
 tensor([[4., 2., 2., 2., 2.],
        [2., 4., 2., 2., 2.],
        [2., 2., 4., 2., 2.],
        [2., 2., 2., 4., 2.],
        [2., 2., 2., 2., 4.]])

请注意,当我们使用相同的参数第二次调用backward时,梯度的值是不同的。发生这种情况是因为在进行backward传播时,PyTorch会 accumulates the gradients, 累积梯度。即,将计算出的梯度值添加到计算图所有叶节点的grad属性中。如果你想计算正确的梯度,你需要先将grad属性归零 。在实际训练中, optimizer 优化器可以帮助我们做到这一点。

Note 笔记

以前,我们调用不带参数的backward()函数。这本质上相当于调用 backward(torch.tensor(1.0)),这是在标量值函数(例如,神经网络训练期间的损失)的情况下,计算梯度的有用方法。

知识检查

torch.autograd 引擎的用途是:在模型优化期间自动计算梯度。

Further Reading 进一步阅读

References 参考资料

使用 PyTorch 进行机器学习的简介 - Training | Microsoft Learn

使用 PyTorch 进行机器学习的简介 - Training | Microsoft Learn

Github

storm-ice/PyTorch_Fundamentals

storm-ice/PyTorch_Fundamentals

  • 26
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰雪storm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值