【 人脸关键点检测评价指标:NME】

人脸关键点检测评价指标:NME

NME(Normalization Mean Error),通常用于评估人脸对齐算法的质量。每个图像的 NME 定义为:所有预测点与ground-truth之间的L2 Norm,除以(关键点个数*两只眼睛之间的距离),具体计算公式如下:

N M E ( P , P ^ ) = 1 M ∑ i = 1 M ∣ ∣ p i − p ^ i ∣ ∣ 2 d NME(P,\hat P) = \frac{1}{M} \sum_{i=1}^{M} \frac{|| p_i - \hat p_i||_2}{d} NME(P,P^)=M1i=1Md∣∣pip^i2

其中, P P P P ^ \hat P P^分别是每幅图像关键点坐标的真实值和预测值, p ^ i \hat p_i p^i 为第 i i i 个坐标的预测值, p i p_i pi 为第 i i i 个坐标的ground-truth,d为归一化因子。d可以为IPN(Inter- pupil distance normalized error ),也可以为ION(inter-ocular distance normalized error)。IPN表示两眼瞳孔间的距离,ION表示两眼外眼角间的距离

在这里插入图片描述

Adaptive Wing Loss for Robust Face Alignment via Heatmap Regression - Wang_Adaptive_Wing_Loss_for_Robust_Face_Alignment_via_Heatmap_Regression_ICCV_2019_paper.pdf

Adaptive Wing Loss for Robust Face Alignment via Heatmap Regression - Wang_Adaptive_Wing_Loss_for_Robust_Face_Alignment_via_Heatmap_Regression_ICCV_2019_paper.pdf

  • 22
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰雪storm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值