证明 gibbs sampling 是接受率为1 的Metropolis Hasting 特例

本文证明了Gibbs Sampling在Metropolis-Hastings算法中具有接受率为1的特性。通过分析Gibbs Sampling的采样过程和Metropolis-Hastings算法的接受率公式,结合各维度不相关的假设,得出Gibbs Sampling的接受率始终为1的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

证明 gibbs sampling 是接受率为1 的Metropolis Hasting 特例

首先回顾下 gibbs sampling 以及 MH算法

  • Metropolis Hasting Algorithm

这里写图片描述

  • gibbs sampling
    这里写图片描述

下面来证明 gibbs sampling是接受率为1的Metropolis Hasting的特例:
在gibbs sampling 采样中接受率表示为 π(x)q(xi|xi)π(x)q(xi|xi)

由于 <

### Gibbs Sampling Algorithm in Machine Learning Gibbs采样是一种用于马尔可夫链蒙特卡罗(MCMC)方法中的重要技术,广泛应用于贝叶斯统计和机器学习领域。该算法通过迭代更新变量的概分布来近似复杂的多维概分布。 #### 原理 在一个含有多个随机变量的联合概模型中,直接计算条件概可能非常困难。然而,在给定其他所有变量的情况下,某些单个变量的条件概可以更容易地被估计出来。基于这一观察,Gibbs采样采用逐个抽取的方式逐步构建样本序列: 对于每一个维度上的参数θ_i,当已知其余n-1个维度的具体取值时,可以从对应的条件分布p(θ_i|θ_(-i))中抽取出新的样本作为下一个状态的一部分[^2]。 ```python def gibbs_sampling(num_samples, initial_values, conditionals): samples = [initial_values] for _ in range(num_samples): new_sample = list(samples[-1]) for i in range(len(new_sample)): current_conditional = conditionals[i] # Sample from conditional distribution p(theta_i | theta_{-i}) new_value = np.random.choice( possible_values, p=current_conditional(new_sample[:i] + new_sample[i+1:]) ) new_sample[i] = new_value samples.append(new_sample) return samples[1:] ``` 此过程重复多次之后,产生的样本集能够很好地代表原始复杂分布下的数据特征。 #### 实现方法 上述伪代码展示了如何实现基本形式的Gibbs采样器。实际应用中还需要考虑诸如收敛诊断、混合速度优化等问题。此外,针对特定类型的模型结构(如高斯混合模型),可能存在更高效的变体版本。 #### 应用场景 Gibbs采样的灵活性使其适用于各种不同的场合,特别是在处理具有隐含变量或缺失数据的问题上表现出色。典型的应用案例包括但不限于: - **主题建模**:LDA(Latent Dirichlet Allocation)利用Gibbs采样来进行文档集合的主题推断; - **图像修复**:通过对损坏像素周围的邻域信息进行推理填补丢失部分; - **基因表达分析**:帮助识别不同条件下生物样品之间的差异表达模式;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值