今天多校大家都发挥了自己的水平,但是还是有进步的空间哦。
我说下自己写的三道题吧。
其实就是一道裸的波利亚计数定理。
置换方法 定点循环节 面点循环节 棱的循环节 总计 个数
不动 8 54 12 74 1
面心-面心(+-90度) 2 15 3 20 6
面心-面心(180度) 4 28 6 38 3
棱心-棱心(180度) 4 27 7 38 6
对角线 (120度) 4 18 4 26 8
最后的ans = (1*k^74 + 6*k^20 + 3*k^38 + 6*k^38 + 8*k^26) /24
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define FOR(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define DOR(i,a,b) for(int (i)=(a);(i)>=(b);(i)--)
#define oo (1<<30)
#define eps 1e-6
#define nMax 100010
#define MOD 10007
#define LL long long
LL EXP(LL a,int n){
if(n==0) return 1LL;
LL k=EXP(a,n/2);
k =k*k%MOD;
if(n&1) k = k*a%MOD;
return k;
}
int c[]={74,20,38,38,26};
LL b[]={1,6,3,6,8};
LL k;
int main(){
#ifndef ONLINE_JUDGE
//freopen("input.txt","r",stdin);
#endif
int t,cas=1;
scanf("%d",&t);
while(t--){
scanf("%I64d",&k);
LL ans=0;
for(int i= 0;i<5;i++) ans = (ans+EXP(k,c[i])*b[i])%MOD;
ans = (ans*417)%MOD;
printf("Case %d: %I64d\n",cas,ans);
cas++;
}
return 0;
}
1007
典型的树状数组的应用。
把询问保存按l排序。
维护的树状数组是可以直接求出ans的。
具体的方法请看代码。
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define FOR(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define DOR(i,a,b) for(int (i)=(a);(i)>=(b);(i)--)
#define oo (1<<30)
#define eps 1e-6
#define nMax 100010
int a[nMax],f[nMax],tp[nMax];
int n,m;
int c[nMax],vis[nMax];
int lowbit(int x) { return x&(-x);}
int sum(int x){
int sum=0;
while(x>0){
sum += c[x];
x -= lowbit(x);
}
return sum;
}
int add(int x,int ad) {
f[x]+=ad;
while(x<=n) {
c[x] += ad;
x += lowbit(x);
}
return 0;
}
void ins(int p,int k){
if(k==0) {
if(tp[a[p]+1]<p && vis[a[p]+1]==0){
add(p,-f[p]);
}else {
add(p,1-f[p]);
}
}else {
if(tp[a[p]-1]<p && vis[a[p]-1]==0){
add(p,-f[p]);
}else {
add(p,1-f[p]);
}
}
//vis[a[p]]=0;
}
struct qu{
int l,r,id;
void read(){
scanf("%d%d",&l,&r);
}
friend bool operator < (const qu& u,const qu& v) {
if(u.l==v.l) return u.r<v.r;
return u.l<v.l;
}
};
qu q[nMax];
int ans[nMax];
int main(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
#endif
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
FOR(i,1,n) scanf("%d",&a[i]);
FOR(i,1,n) tp[a[i]]=i;tp[0]=tp[n+1]=n+1;
memset(c,0,sizeof(c));
memset(f,0,sizeof(f));
FOR(i,1,n) vis[i]=0;vis[0]=vis[n+1]=0;
for(int i=1;i<=n;i++) {
if(vis[a[i]+1]&&vis[a[i]-1]) add(i,-1);
if(!vis[a[i]+1]&&!vis[a[i]-1]) add(i,1);
vis[a[i]]=1;
}
FOR(i,1,n) vis[i]=0;
FOR(i,1,m) q[i].read(),q[i].id=i;
sort(q+1,q+m+1);
int top=1;
//FOR(j,1,n) printf("--%d ",f[j]);printf("\n");
FOR(i,1,m) {
while(q[i].l>top) {
vis[a[top]]=1;
int b=a[top]+1;
if(b<=n && vis[b]==0) ins(tp[b],0);
b=a[top]-1;
if(b>=1 && vis[b]==0) ins(tp[b],1);
add(top,-f[top]);top++;
//FOR(j,1,n) printf("%d ",f[j]);printf("\n");
}
ans[q[i].id]=sum(q[i].r);
}
FOR(i,1,m) printf("%d\n",ans[i]);
}
return 0;
}
1008
这种签到题就木有必要说什么了。
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
#define FOR(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define DOR(i,a,b) for(int (i)=(a);(i)>=(b);(i)--)
#define oo (1<<30)
#define eps 1e-6
#define nMax 100010
#define MOD 10007
#define LL long long
char s[nMax];
int n;
LL f[nMax];
void init(){
f[1]=1;f[2]=2;
for(int i=3;i<=10086;i++) f[i]=(f[i-1]+f[i-2])%MOD;
}
LL EXP(LL a,LL n){
if(n==0) return 1LL;
LL k=EXP(a,n/2);
k=k*k%MOD;
if(n&1) k=k*a%MOD;
return k;
}
map<int,int> h;
//#define bug puts("hehe");
int main(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
#endif
init();
int t,cas=1;
scanf("%d",&t);
while(t--){
scanf("%s",s);
n = strlen(s);
h.clear();
for(int i=0;i<n;){
int j=i;
if(s[j]=='h' && j+1<n && s[j+1]=='e'){
int sum=0;
while(j<n){
if(s[j]=='h' && j+1<n && s[j+1]=='e') sum+=1,j+=2;
else break;
}
if(sum>=2) h[sum]++;
}else j++;
i=j;
}
LL ans=1LL;
map<int,int>::iterator iter;
for(iter=h.begin();iter!=h.end();iter++){
LL add = EXP(f[(*iter).first],(*iter).second);
ans = (ans*add)%MOD;
}
printf("Case %d: %I64d\n",cas,ans);
cas++;
}
return 0;
}