随着用来implement神经网络的工具变得越来越强大,仅仅能够针对数据写出Neural Network不再是一件及其挑战的事情,有时在Tensorflow几十行代码就可以完成。在这个日渐成熟的AI学术环境中,有能力的研究者不需要停留在在把已有的算法搬到新的应用上去,而是时刻想要进一步改善算法,推进AI的水平。当然,算法的背后没有数学的支撑是不行的,所以对数学理论的了解在现在的AI领域中重要性日渐提高。
Optimal Transport是诸多概念中十分重要的一环,对于改进AI算法有着很大的潜力,也已经有一批基于OT的paper开始出现了。读懂这本已经有点名气的Computational Optimal Transport,了解OT中最关键的数学理论,能够使得之后阅读这些文章,或是自己进行改进实验,都变得轻松很多,所以笔者这里试图贡献一些读书笔记。这本书是由两位法国data scientist(其中一位Google Brain)在网上发布的,可以免费阅读。当然,如有失误,请尽可能指正。