拉勾网招聘职位的数据分析 - 数据分析师职位

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/uvyoaa/article/details/80575899

最近写了一篇关于如何抓取数据的文章,目前没有审核过,通过后再来更新。不过网上有很多关于这块技术的详细操作,只要搜索一下就能找到。

现在要说的是拿到数据后,如何处理数据,如何描述数据,如何发现数据中的信息/问题。对数据分析师来说,描述和展示数据,这是基础的一步。如何发现问题,并提出相关建议,最终能把建议落地,这一系列操作,对数据分析师才是挑战。

我只获取了北京地区的职位数据,数据如下:


一、我想分析以下几个问题:

1.职位区域分布

2.职位薪水分布

3.工作经验需求分布

4.工作经验对薪水的影响

5.职位的行业分布

6.公司福利

二、工具有jupyter notebook,python,pandas,matplotlib,jiaba,wordcloud

三、获取数据

首先要把相关的库加载进来,如下:


如果数据存放在CSV文件里,那么利用pandas直接读取即可,如下:

import pandas as pd
df = pd.read_csv(r'd:\xxx\xx.csv')

如果数据存放在MySQL数据库里,那么利用pymysql,pandas来读取,如下:

四、处理数据

一共获取了450条记录,进行数据去重,然后剩下435条记录,保存在变量position_df里。

五、分析数据

1.职位区域分布

北京市有9个区提供数据分析人才的岗位,绝大多数岗位集中在朝阳、海淀两区,这与大量的互联网公司在这两个区聚集相匹配。有想往这方面发展的同学,可以多到这两个区尝试尝试。

2.职位薪水分布 - 网上获得的薪水多是区间范围,且有重叠,不利于量化分析,因此需要先整理规范数据格式,取区间最小数为具体薪水。

从招聘网站上获得数据可以看出,公司提供的最低薪水集中在10k-20k,只有少数人可以获得较高薪水,极少数人获得极高薪水,让人充满期待和向往。总之,数据分析师的薪水还是不错的,这个行业也是不错的选择。

3.工作经验需求分布 - 直接按需求经验分组,取得相应职位数量

这里有个需要处理的情况是把‘不限’,‘应届毕业生’都标成1年以下。

为了方便对经验排序,按经验名制作一个字典,值是排序数。

工作经验属于偏正态分布,3-5年工作经验的需求量最大,其次是1-3年的熟练员工,不足1年工作经验的需求量很少,5-10年经验需求量较少。可以看出,大量职位需求集中在1-5年,且5年是瓶颈期,所以5年内要攒到足够的实力,迎接之后的挑战。

4.工作经验对薪水的影响

随着工作经验的增长,数据分析师的薪水也在增长。10年内不会受到年龄的影响,这点很不错。

5.职位的行业分布

数据分析职位主要集中在移动互联网行业,这是个大类。子类里金融、数据服务、O2O、电子商务提供的数据分析职位较多。总之拥抱互联网肯定是没错的。

6.公司福利 - jieba分词处理,生成词云图

说到公司诱惑,感觉大同小异。常见的有五险一金、带薪休假、节日礼物、内部培训、旅游、定期体检、年终奖等。这也说明互联网公司的福利已经觉得大家认同了。

从整个分析可以看到,数据分析师职位是一个偏年轻又保质又能持续发展的职位,,互联网公司需求量比较大(拉勾本身偏重互联网,可能这个数据不太准确)。

你准备好拥抱互联网了么,如果你选择了数据分析师职位,就在坚持中持续发展吧,加油。











展开阅读全文

没有更多推荐了,返回首页