线性分组码学习笔记(二)分组码及伽罗华域

  • 分组码概念:

    1. 设信道为D元输入输出的DMC信道,字母表为{0,1,…D-1}。
    2. 信道转移概率矩阵为

1-p

p/(D-1)

p/(D-1)

p/(D-1)

1-p

p/(D-1)

p/(D-1)

p/(D-1)

1-p

  1. 信道的传输错误概率为p,信道容量为C=logD-H(p)-plog(D-1)。
  2. 对离散随机变量序列{X1,X2,…XL}进行编码获得(N,L)码{U1,U2,…UN},则称U为(N,L)分组码。

注:为了和更复杂的非分组码区分称为分组码,例Turbo码。

  • 满足香农信道编码定理
  • 分组码预备知识:

  • 伽罗华域:

    1. 设D为一个素数。于是字母表{0,1,…,D-1}中所有字母关于(modD)的加法和(modD)的乘法构成一个封闭的代数区域,成为有限域(Galois域),记作GF(D)=({0,1,…,D-1},(modD)加法,(modD乘法))。
      1. modD加法:Galois域内任何数相加之后关于D取余数。
      2. modD乘法:Galois域内任何数相乘关于D取余。
  • 0+0=0

    1+1=0

    1+0=1

    0×0=0

    0×1=0

    1×1=1

  • 性质:
    1. {0,1,…,D-1}加法交换群(Abel):任何数加0等于自身,称0为加法中性元;任何数关于加法中性元有一个负元,即与逆元之和等于中性元。
    2. {1,2,…,D-1}乘法交换群(Abel):任何数乘以1等于自身,称1乘法中性元;同时存在乘法逆元,即其本身;
    3. 结合律&分配律。
  • 注解:

  • 如果D不是素数,则集合为有限环而非有限域;
  • D可以是素数的幂,但并非上述结构;
  • 有限域GF(D)上的线性代数可以实现类似实数域的线性代数,条件是加法和乘法由modD加法和modD乘法替换得到;
  • 有限域和实数域的区别:”极限“,”逼近“等概念不存在了;
  • 非全零向量X和Y,X·Y' = 0,在实数域X与Y线性无关,但有限域不一定成立。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页