第九届蓝桥杯初赛C++ B组第七题:螺旋折线

转载:https://blog.csdn.net/qq799028706/article/details/84312062

如图p1.pgn所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。

例如dis(0, 1)=3, dis(-2, -1)=9

给出整点坐标(X, Y),你能计算出dis(X, Y)吗?

【输入格式】
X和Y

对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000
90000000
【输出格式】
输出dis(X, Y)

【输入样例】
0 1

【输出样例】
3

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
 

#include <iostream>
#include <cmath> 
using namespace std; 

int main()
{

	int X,Y;
    cin>>X>>Y;  
    // 判断所在点所在的正方形
    int n = max(abs(X), abs(Y));

    // 1. 之前正方形的长度和
    int Sn = 4*(n-1)*n;  //利用等差数列前 n 项和计算公式得出 
        
    // 2. 计算点(-n, -n) 到点(X, Y)的距离, 考虑清楚情况
    int sum = 0;
    int px = -n, py = -n;
    int d1 = X-px, d2 = Y-py;
    if (Y > X)
        sum += (d1+d2);
	else 
        sum += (8*n-d1-d2);    
    cout<< sum + Sn;
    
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值