POJ 1191 && HDU 2517 棋盘分割(dp)

470 篇文章 3 订阅
202 篇文章 1 订阅

Description
将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)
这里写图片描述
原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。
均方差这里写图片描述,其中平均值这里写图片描述,xi为第i块矩形棋盘的总分。
请编程对给出的棋盘及n,求出O’的最小值。
Input
第1行为一个整数n(1 < n < 15)。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
Output
仅一个数,为O’(四舍五入精确到小数点后三位)。
Sample Input
3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3
Sample Output
1.633
Solution
dp+记忆化搜索
先将均方差公式变形:
这里写图片描述
由于均值一定,故只需使每个矩阵的总分的平方和最小即可
题目固定是8*8,用标号来表示矩形,对于最小的小方格,用(i,j)表示,即第i行第j列的小方格,注意不是点的坐标。所以对于一个矩形,我们用它左上角的小方格和右下角的小方格来表示。例如,整个棋盘就是(1,1,8,8)
按题目要求,每次分割出一个矩形后,剩下的也必须是矩形,那么其实每次分割只能切一刀,如果是切两刀得到的矩形,那么剩下的就不会是矩形了,所以只能横着切或者竖着切,而且一切的话要从头切到底(这很容易理解)
一刀切下去会得到两个矩形,选一个为本次切割得到的,以后只能切另一个,选出来的那个以后不能再切了
动态转移方程,大矩形dp值由小矩形dp值推得来,还要加上次数,dp[n][x1][y1][x2][y2]就是要令当前矩形分出n个小矩形,也就是切割n-1刀
我们要的目标值就是dp[n][1][1][8][8]
一:横着切,当前矩形将会分成上下两份
1.选上面:dp[k][x1][y1][x2][y2]=s[x1][y1][x][y2]+dp[k-1][x+1][y1][x2][y2];
2.选下面:dp[k][x1][y1][x2][y2]=s[x+1][y1][x2][y2]+dp[k-1][x1][y1][x][y2];(x1<=x<=x2)
二:竖着切,当前矩形将会分成左右两份
1.选左边:dp[k][x1][y1][x2][y2]=s[x1][y1][x2][y]+dp[k-1][x1][y+1][x2][y2];
2.选右边:dp[k][x1][y1][x2][y2]=s[x1][y+1][x2][y2]+dp[k-1][x1][y1][x2][y];(y1<=y<=y2)
显然这个DP用记忆化搜索来做更合适
注意:
1.dp数组全部初始化为-1,表示还没被计算,
2.dp[1][x1][y1][x2][y2]=s[x1][y1][x2][y2],就是不用切的时候的dp值
3.若当前要求的是dp[k][x1][y1][x2][y2],则一开始要赋初值为INF,再开始枚举切割方案,因为对于dp[k][x1][y1][x2][y2],要分出k块矩形,但是不一定能分得到,可能根本不够分,所以当前状态如果分不出k个小矩形的话,这个状态是一个不可能的状态,为INF,整个枚举过程中它的值也不会更新
Code

#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define min(a,b)  a<b?a:b
#define INF 0x3f3f3f3f
#define maxn 20
int dp[maxn][10][10][10][10];
int s[10][10][10][10];
int c[10][10];
int add(int x1,int y1,int x2,int y2)//计算一个矩形的总分 
{
    int res=0;
    for(int i=x1;i<=x2;i++)
        for(int j=y1;j<=y2;j++)
            res+=c[i][j];
    return res;
}
int dfs(int k,int x1,int y1,int x2,int y2)
{
    if(dp[k][x1][y1][x2][y2]!=-1)
        return dp[k][x1][y1][x2][y2];
    dp[k][x1][y1][x2][y2]=INF;
    if(x2>x1)//至少有两行才能横着切 
        //1.选上面:dp[k][x1][y1][x2][y2]=s[x1][y1][x][y2]+dp[k-1][x+1][y1][x2][y2];
        //2.选下面:dp[k][x1][y1][x2][y2]=s[x+1][y1][x2][y2]+dp[k-1][x1][y1][x][y2];
        for(int x=x1;x<x2;x++)
        {
            int t1=dfs(k-1,x+1,y1,x2,y2);//取上面则递归计算下面 
            int t2=dfs(k-1,x1,y1,x,y2);//取下面则递归计算上面 
            int t=min(t1+s[x1][y1][x][y2],t2+s[x+1][y1][x2][y2]);
            dp[k][x1][y1][x2][y2]=min(dp[k][x1][y1][x2][y2],t);
        }
    if(y2>y1)//至少有两列才能竖着切 
        //1.选左边:dp[k][x1][y1][x2][y2]=s[x1][y1][x2][y]+dp[k-1][x1][y+1][x2][y2];
        //2.选右边:dp[k][x1][y1][x2][y2]=s[x1][y+1][x2][y2]+dp[k-1][x1][y1][x2][y];
        for(int y=y1;y<y2;y++)
        {
            int t1=dfs(k-1,x1,y+1,x2,y2);//取左边则递归计算右边 
            int t2=dfs(k-1,x1,y1,x2,y);//取右边则递归计算左边 
            int t=min(t1+s[x1][y1][x2][y],t2+s[x1][y+1][x2][y2]);
            dp[k][x1][y1][x2][y2]=min(dp[k][x1][y1][x2][y2],t);
        }   
    return dp[k][x1][y1][x2][y2];
}
int main()
{
    int x1,x2,y1,y2,n;
    scanf("%d",&n);
    for(int i=1;i<=8;i++)
        for(int j=1;j<=8;j++)
            scanf("%d",&c[i][j]);
    memset(dp,-1,sizeof(dp));//初始化 
    for(x1=1;x1<=8;x1++)//初始化 
        for(x2=x1;x2<=8;x2++)
            for(y1=1;y1<=8;y1++)
                for(y2=y1;y2<=8;y2++)
                {
                    int temp=add(x1,y1,x2,y2);
                    dp[1][x1][y1][x2][y2]=s[x1][y1][x2][y2]=temp*temp;
                }
    dfs(n,1,1,8,8);
    double X,ans;
    X=1.0*add(1,1,8,8);//X即为每个矩形总分的最小平方和 
    X=(X/n)*(X/n);
    ans=sqrt(1.0*dp[n][1][1][8][8]/n-X);//计算方均差 
    printf("%.3f\n",ans);
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值