
人形loco-manipulation:AMO/HOMIE
文章平均质量分 95
HOMIE——遥操类似ALOHA主从臂的外骨骼驾驶舱收集数据:通过上肢模仿学习和全身控制RL训练自主策略
v_JULY_v
七月在线创始人兼CEO,结构之法算法之道blog之博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人形loco-manipulation专题——涵盖Mobile-TeleVision、下肢RL-上肢模仿的AMO、上下双智能体联合训练的FALCON
自去年起,我司专注于具身智能的场景落地与定制开发,导致需求激增,工作节奏加快。在此背景下,我关注了CMU、UCSD、斯坦福等高校的最新研究,特别是UCSD王小龙团队的AMO工作。AMO提出了一种自适应运动优化框架,通过混合运动合成和可泛化策略训练,解决了人形机器人在动态全身控制中的挑战。该框架结合了动作捕捉数据和概率采样,生成满足动力学约束的全身参考动作,并通过AMO网络实现连续映射,提升了机器人在复杂环境中的适应性和实时响应能力。这一创新为人形机器人的灵巧操作提供了新的解决方案。原创 2025-05-20 22:55:34 · 3094 阅读 · 0 评论 -
HOMIE——遥操类似ALOHA主从臂的外骨骼驾驶舱收集数据:通过上肢模仿学习和全身控制RL训练自主策略
本文一开始是属于此文《人形loco-manipulation专题——涵盖Mobile-TeleVision、外骨骼驾驶舱HOMIE、下肢RL-上肢模仿的AMO、上下双智能体联合训练的FALCON》的第二部分的但考虑到在这4个针对loco-manipulation的模型中,我想先尝试一下其中的这个HOMIE加之,HOMIE相对开源的更彻底,更想把其介绍的更详尽细致些考虑到为了避免对上文篇幅过长的担忧,而使得很多细节 没法尽情展开,故把HOMIE独立出来,成此文原创 2025-05-28 23:50:39 · 2414 阅读 · 0 评论