实现图像中斜放物体转正的操作

实现图像中斜放物体转正的操作

我用的是pycharm中的python3.x,因为自己研究过程中会存在物体斜放的情况,所以需要通过程序将物体进行摆正后处理。方法比较简单,利用的是物体旋转的外接矩形的性质。
以这张图为例
以上图为例,图像中物体是向右斜放的,我们所需要做的是将物体“摆正”。

import cv2
import numpy as np

#读取原图像
img=cv2.imread(‘C:/Users/86185/Desktop/8.2.jpg’)
#读取灰度图像
img1 = cv2.imread(‘C:/Users/86185/Desktop/8.2.jpg’,0)
#使用中值滤波
img2 = cv2.medianBlur(img1,39)
#二值化
ret,thresh1=cv2.threshold(img2,50,255,cv2.THRESH_BINARY)
#形态学运算中的开运算(opening):先腐蚀再膨胀
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(thresh1, cv2.MORPH_OPEN, kernel)
#根据阈值识别出分叉类型的胡萝卜
_, contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(img, [box], 0, (0, 0, 255), 2)
x,y,w,h = cv2.boundingRect(cnt) #(x,y)是旋转的边界矩形左上角的点,w ,h分别是宽和高

o1,o2 = rect[0]
o1 = int(o1)
if w < h:
angle = int(rect[2])
M = cv2.getRotationMatrix2D((o1, o2), angle, 1)
rows, cols = img.shape[:2]
print(‘left’)
# print(rows,cols)
dst = cv2.warpAffine(img, M, (cols, rows))
if w > h:
angle = 90 + int(rect[2])
M = cv2.getRotationMatrix2D((o1, o2), angle, 1)
rows, cols = img.shape[:2]
# print(rows,cols)
dst = cv2.warpAffine(img, M, (cols, rows))
print(‘right’)

根据宽和高的大小判断物体向哪个方向“歪”的。
运行程序得到的图像如下图:
在这里插入图片描述
另外一张向左歪的图像,试了后也可适用,效果还行。
在这里插入图片描述
在这里插入图片描述

要将倾的文字摆,需要进行以下步骤: 1. 读取图像并将其转换为灰度图像。 2. 进行二值化处理,将文字变为黑色,背景变为白色。 3. 执行形态学操作,使文字变得更加连续。 4. 找到所有的直线并筛选出水平和垂直方向的直线。 5. 计算所有直线的角度,并找到与水平和垂直方向最接近的直线。 6. 图像,使找到的直线与水平方向对齐。 7. 进行OCR文字识别。 以下是一个示例代码: ``` import cv2 import numpy as np img = cv2.imread('skewed_text.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化处理 thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] # 形态学操作 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3)) morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) # 找到所有直线 lines = cv2.HoughLinesP(morph, 1, np.pi/180, 100, minLineLength=100, maxLineGap=10) # 筛选出水平和垂直方向的直线 h_lines = [] v_lines = [] for line in lines: x1, y1, x2, y2 = line[0] angle = np.arctan2(y2 - y1, x2 - x1) * 180 / np.pi if angle < -45: angle += 180 if abs(angle) < 15: h_lines.append(line) elif abs(angle - 90) < 15: v_lines.append(line) # 计算所有直线的角度,并找到与水平和垂直方向最接近的直线 h_angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) for line in h_lines] v_angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) for line in v_lines] h_angle = np.median(h_angles) * 180 / np.pi v_angle = np.median(v_angles) * 180 / np.pi if abs(h_angle) < abs(v_angle): angle = h_angle else: angle = v_angle - 90 # 图像 rows, cols = img.shape[:2] M = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1) rotated = cv2.warpAffine(img, M, (cols, rows), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) # OCR文字识别 cv2.imshow('rotated', rotated) cv2.waitKey() ``` 在这个示例代码中,我们首先读取了一张倾的文字图片,并将其转换为灰度图像。然后进行了二值化处理和形态学操作。接着,我们使用霍夫变换找到了所有直线,并筛选出水平和垂直方向的直线。计算所有直线的角度,并找到与水平和垂直方向最接近的直线。最后,图像并进行OCR文字识别。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值