自然语言处理基础
VariableX
这个作者很懒,什么都没留下…
展开
-
【word2vec】篇三:基于Negative Sampling 的 CBOW 模型和 Skip-gram 模型
系列文章:【word2vec】篇一:理解词向量、CBOW与Skip-Gram等知识【word2vec】篇二:基于Hierarchical Softmax的 CBOW 模型和 Skip-gram 模型【word2vec】篇三:基于Negative Sampling 的 CBOW 模型和 Skip-gram 模型Negative Sampling是这么一种求解word2vec模型的方法,它摒弃了霍夫曼树,采用了Negative Sampling(负采样)的方法来求解。负采样算法在CBOW模型中,原创 2020-06-03 20:41:25 · 864 阅读 · 0 评论 -
【word2vec】篇二:基于Hierarchical Softmax的 CBOW 模型和 Skip-gram 模型
文章目录CBOW 模型基本结构目标函数梯度计算Skip-gram 模型基本结构梯度计算优缺点分析本篇是介绍基于Hierarchical Softmax的 CBOW 模型和 Skip-gram 模型。CBOW 模型基本结构CBOW 模型是在已知当前词wtw_twt的上下文wt−2,wt−1,wt+1,wt+2w_{t-2},w_{t-1},w_{t+1},w_{t+2}wt−2,wt−1,wt+1,wt+2的前提下预测当前词wtw_twt。后面我们用comtext(w)comtext(w)原创 2020-06-03 20:32:41 · 843 阅读 · 0 评论 -
【word2vec】篇一:理解词向量、CBOW与Skip-Gram等知识
文章目录词向量基础One-hot representionDistributed Representationword2vec 基础知识CBOW 和 Skip-gram霍夫曼树由于计算机不能直接对各种字符进行运算,为此需要将词的表示进行一些转换。因此,在自然语言处理中,通常需要对输入的语料进行一些预处理:其中,如何对词汇进行表示是很关键的问题,糟糕的表示方法容易导致所谓的 “Garbage in, garbage out”。词向量基础对词汇的表示,常见的有One-hot represention原创 2020-06-03 20:17:11 · 1566 阅读 · 0 评论 -
NLP基础:n-gram语言模型和神经网络语言模型
文章目录语言模型的计算n-gram 语言模型n-gram 平滑技术神经网络语言模型(NNLM)基本思想神经网络语言模型小结语言模型评价指标—困惑度语言模型是自然语言处理中的重要技术,假设一段长度为TTT的文本中的词依次为w1,w2,…,wTw_1, w_2, \ldots, w_Tw1,w2,…,wT,语言模型将计算该序列的概率:P(w1,w2,…,wT).P(w_1, w_2, \ldots, w_T).P(w1,w2,…,wT).语言模型有助于提升自然语言处理任务的效果,例如在语音原创 2020-06-02 10:45:23 · 1605 阅读 · 0 评论