sklearn 随机森林(分类器、回归器)的重要参数、属性、方法理解

随机森林分类器

引入

from sklearn.ensemble import RandomForestClassifier
# 全部参数
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                       criterion='gini', max_depth=None, max_features='auto',
                       max_leaf_nodes=None, max_samples=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=100,
                       n_jobs=None, oob_score=
### 随机森林参数调优的方法及工具 随机森林是一种基于决策树的集成学习算法,其核心在于通过多棵树的组合提升模型性能和泛化能力。为了使随机森林达到最佳效果,通常需要对其多个超参数进行调整。 #### 1. **主要超参数及其作用** 以下是随机森林中常见的几个重要超参数以及它们的作用: - `n_estimators`:控制森林中决策树的数量。增加该值可降低过拟合风险并提高稳定性,但也可能带来计算成本上升[^1]。 - `max_features`:指定每棵决策树在分割节点时考虑的最大特征数量。常用选项包括 `'auto'`, `'sqrt'`, 和 `'log2'`,分别对应于全部特征数、平方根特征数和对数特征数[^2]。 - `criterion`:定义用于评估分裂质量的标准,默认情况下分类任务采用 Gini 不纯度而回归任务使用均方误差 (MSE)[^3]。如果目标变量呈现特定分布特性(如泊松分布),可以选择适合的目标函数作为替代标准。 - 树结构相关参数: - `min_samples_split`: 控制内部节点再划分所需最小样本数; - `min_samples_leaf`: 定义叶节点所需的最少样本数目; - `max_depth`: 设定单颗树最大深度以防止过度生长;这些都可以用来调节个体树复杂程度从而影响整体表现[^4]。 #### 2. **常用的调参策略** ##### (1)**手动探索法** 根据经验设定初始值区间后逐步测试不同配置下的模型性能变化趋势。例如针对 n_estimators 参数空间可以从较小范围开始尝试直到发现稳定区域为止。 ##### (2)**自动化搜索技术** 利用 Randomized Search 或 Grid Search 自动遍历候选集合寻找最优解集: - **RandomSearch**: 在给定边界内随机采样若干组实验条件执行验证过程效率较高尤其当维度较大时适用性强. ```python from sklearn.model_selection import RandomizedSearchCV param_dist = { 'n_estimators': range(20, 100), 'max_features': ['auto', 'sqrt','log2'], } random_search = RandomizedSearchCV(RandomForestClassifier(), param_distributions=param_dist, cv=5) ``` - **GridSearchCV**: 对所有可能性进行全面扫描虽然耗时较长但能保证找到全局最优点适用于小型数据场景下精确寻优需求. ```python from sklearn.model_selection import GridSearchCV param_grid = {'n_estimators':[80,90],'max_features':['sqrt']} grid_search = GridSearchCV(RandomForestClassifier(), param_grid=param_grid,cv=5) ``` #### 3. **实践建议** 结合实际应用场景灵活运用上述方法论,在初步构建基础版本之后借助可视化手段比如绘制学习曲线辅助分析是否存在欠/过拟合现象进而指导后续精细化微调方向。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值