文章目录
xgboost 包含原生接口和 sklearn 风格接口两种,并且二者都实现了分类和回归的功能。如果想了解一些理论性的内容,可以看看之前的文章: XGBoost算法的相关知识
一、xgboost 原生接口
重要参数
1,booster
用于指定弱学习器的类型,默认值为 ‘gbtree’,表示使用基于树的模型进行计算。还可以选择为 ‘gblinear’ 表示使用线性模型作为弱学习器。
推荐设置为 ‘gbtree’,本文后面的相关参数设置都以booster设置为’gbtree’为前提。
2,eta / learning_rate
如果你看了我之前发的XGBoost算法的相关知识,不难发现XGBoost为了防止过拟合,引入了"Shrinkage"的思想,即不完全信任每个弱学习器学到的残差值。为此需要给每个弱学习器拟合的残差值都乘上取值范围在(0, 1] 的 eta,设置较小的 eta 就可以多学习几个弱学习器来弥补不足的残差。
在XGBClassifier与XGBRegressor中,对应参数名为 learning_rate。
推荐的候选值为:[0.01, 0.015, 0.025, 0.05, 0.1]
3,gamma
指定叶节点进行分支所需的损失减少的最小值,默认值为0。设置的值越大,模型就越保守。
**推荐的候选值为:[0, 0.05 ~ 0.1, 0.3, 0.5, 0.7, 0.9, 1] **
4,alpha / reg_alpha
L1正则化权重项,增加此值将使模型更加保守。
在XGBClassifier与XGBRegressor中,对应参数名为 reg_alpha 。
推荐的候选值为:[0, 0.01~0.1, 1]
5,lambda / reg_lambda
L2正则化权重项,增加此值将使模型更加保守。
在XGBClassifier与XGBRegressor中,对应参数名为 reg_lambda。
推荐的候选值为:[0, 0.1, 0.5, 1]
6,max_depth
指定树的最大深度,默认值为6,合理的设置可以防止过拟合。
推荐的数值为:[3, 5, 6, 7, 9, 12, 15, 17, 25]。
7,min_child_weight
指定孩子节点中最小的样本权重和,如果一个叶子节点的样本权重和小于min_child_weight则拆分过程结束,默认值为1。
推荐的候选值为:[1, 3, 5, 7]
8,subsample
默认值1,指定采样出 subsample * n_samples 个样本用于训练弱学习器。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。 取值在(0, 1)之间,设置为1表示使用所有数据训练弱学习器。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。
推荐的候选值为:[0.6, 0.7, 0.8, 0.9, 1]
9,colsample_bytree
构建弱学习器时,对特征随机采样的比例,默认值为1。
推荐的候选值为:[0.6, 0.7, 0.8, 0.9, 1]
10,objective
用于指定学习任务及相应的学习目标,常用的可选参数值如下:
- “reg:linear”,线性回归(默认值)。
- “reg:logistic”,逻辑回归。
- “binary:logistic”,二分类的逻辑回归问题,输出为概率。
- “multi:softmax”,采用softmax函数处理多分类问题,同时需要设置参数num_class用于指定类别个数
11,num_class
用于设置多分类问题的类别个数。
12,eval_metric
用于指定评估指标,可以传递各种评估方法组成的list。常用的评估指标如下:
-
‘rmse’,用于回归任务
-
‘mlogloss’,用于多分类任务
-
‘error’,用于二分类任务
-
‘auc’,用于二分类任务
13,silent
数值型,表示是否输出运行过程的信息,默认值为0,表示打印信息。设置为1时,不输出任何信息。
推荐设置为 0 。
14,seed / random_state
指定随机数种子。
在XGBClassifier与XGBRegressor中,对应参数名为 random_state 。
训练参数
以xgboost.train为主,参数及默认值如下:
xgboost.train(params, dtrain, num_boost_round=10, evals=(),
obj=None, feval=None, maximize=False,
early_stopping_rounds=None, evals_result=None,
verbose_eval=True, xgb_model=None, callbacks=None)
1,params
字典类型,用于指定各种参数,例如:{‘booster’:‘gbtree’,‘eta’:0.1}
2,dtrain
用于训练的数据,通过给下面的方法传递数据和标签来构造:
dtrain = xgb.DMatrix(data, label=label)
3,num_boost_round
指定最大迭代次数,默认值为10
4,evals
列表类型,用于指定训练过程中用于评估的数据及数据的名称。例如:[(dtrain,‘train’),(dval,‘val’)]
5,obj
可以指定二阶可导的自定义目标函数。
6,feval
自定义评估函数。
7,maximize
是否对评估函数最大化,默认值为False。
8,early_stopping_rounds
指定迭代多少次没有得到优化则停止训练,默认值为None,表示不提前停止训练。如果设置了此参数,则模型会生成三个属性:
-
best_score
-
best_iteration
-
best_ntree_limit
注意:evals 必须非空才能生效,如果有多个数据集,则以最后一个数据集为准。
9,verbose_eval
可以是bool类型,也可以是整数类型。如果设置为整数,则每间隔verbose_eval次迭代就输出一次信息。
10,xgb_model
加载之前训练好的 xgb 模型,用于增量训练。
预测函数
主要是下面的两个函数:
1,predict(data),返回每个样本的预测结果
2,predict_proba(data),返回每个样本属于每个类别的概率
注意:data 是由 DMatrix 函数封装后的数据。
绘制特征重要性
代码如下:
from xgboost import plot_importance
# 显示重要特征,model 为训练好的xgb模型
plot_importance(model)
plt.show()
分类例子
from sklearn.datasets import load_iris
import xgboost as xgb
from xgboost import plot_importance
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集
iris = load_iris()
X,y = iris.data,iris.target
# 数据集分割
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=123457)
# 参数
params = {
'booster': 'gbtree',
'objective': &