图嵌入
文章平均质量分 93
VariableX
这个作者很懒,什么都没留下…
展开
-
阿里大规模图嵌入模型 EGES 论文解读
在大规模电商推荐系统中,至少都包含了两个过程,针对用户的候选召回(Match)以及对候选商品的精排(Rank),有时候还需要线上的策略调控(Re-rank)。本文讲解的 EGES 模型借助随机游走的思想对各种商品做图嵌入,然后用于相似推荐场景的召回过程。图构建文章首先介绍了如何抽取数据来构造图与随机游走序列,具体做法是:以60分钟为窗口抽取用户的点击序列,如下图中的(a)所示。按照点击顺序构造有向图,如下图中的(b)所示,边的权重是所有用户对两个关联商品的点击次数之和。对图的每个节点 根据边的权原创 2021-01-27 20:10:09 · 1513 阅读 · 0 评论 -
图注意力网络(Graph Attention Network, GAT) 模型解读与代码实现(tensorflow2.0)
前面的文章,我们讲解了图神经网络三剑客GCN、GraphSAGE、GAT中的两个:图卷积神经网络(GCN)理解与tensorflow2.0代码实现GraphSAGE 模型解读与tensorflow2.0代码实现本要讲的是GAT(Graph Attention Network),它使用 Attention 机制来对邻居节点进行加权求和,和一般的Attention 机制一样,分为计算注意力系数和加权求和两个步骤。GAT中的 Attention 机制先来看看每一层的输入与输出: inpu原创 2020-12-07 19:33:16 · 7017 阅读 · 4 评论 -
SDNE: 阿里应用深度学习进行图嵌入,构造凑单算法模型
本文介绍 Structural Deep Network Embedding ,以下简称 SDNE,以半监督的方式用深度神经网络来做图嵌入。模型解读论文指出学习网络表示具有三大难点:高度非线性:网络结构是高度非线性的,使用浅层网络无法捕捉高度非线性的网络结构。结构捕捉:同时捕捉到局部结构与全局结构。稀疏性:大部分真实的网络都是稀疏的,仅仅利用网络中的部分连接关系建模效果还不够好。SDNE 的目标是设计一个可以学习到一阶相似度与二阶相似度的模型。一阶相似度与二阶相似度的概念与之前博客【图嵌入】原创 2020-10-16 10:32:22 · 862 阅读 · 0 评论 -
【图嵌入】Graph Embedding 方法之 LINE 原理解读
LINE 出自论LINE: Large-scale Information Network Embedding,与 DeepWalk 相比,比较明显的区别在于:DeepWalk 使用的深度优先搜索策略,而 LINE 使用了广度优先搜索策略。DeepWalk 仅适用于无权图,而LINE模型适用于带权图与无权图。下图展示了一个简单的图,图中的边既可以是有向的,也可以是无向的,并且边的粗细程度也代表了权重的大小:一阶相似度作者认为可以用一阶相似度描述图中成对顶点之间的局部相似度,连接两个节点的边权原创 2020-10-09 19:46:39 · 2925 阅读 · 4 评论 -
【图嵌入】DeepWalk原理与代码实战
DeepWalk基础理论了解过 NLP 的同学对 word2vec 应该不陌生,word2vec 通过句子中词与词之间的共现关系来学习词的向量表示,如果你忘记了,可以看看我之前的博客:【word2vec】篇一:理解词向量、CBOW与Skip-Gram等知识【word2vec】篇二:基于Hierarchical Softmax的 CBOW 模型和 Skip-gram 模型【word2vec】篇三:基于Negative Sampling 的 CBOW 模型和 Skip-gram 模型DeepWa原创 2020-10-09 19:34:06 · 5247 阅读 · 3 评论