记录进步,分享资源,传承知识,从我做起,复现第一代互联网精神。
发布时间:2024年11月18日
一、测试时间
2024-11-18
二、测试环境
硬件:64GB 物理内存 + RTX4060Ti 16GB 显存
软件:Windows11 + 秋叶ComfyUI一体包 + Python 3.10 + torch 2.41 + cuda12.4
工作流: Flux基础文生图
提示词: 1girl,
三、实验方法
每个模型生成一张图片,连续生成三次,查看控制台“提示词执行时间”秒数,去掉其中最大最小值,剩余一个有效成绩四舍五入取整数秒。
四、测试结果
五、结果说明
1.本测试结果仅对应本人所使用的软硬件环境和设置参数,不代表模型在其他环境、参数下的生图能力,请理性对待。
2.本次测试未使用Lora,部分模型因严重解剖学错误,不予记录生图时间,但实际时间成绩与同体积同步数的其他模型基本相当,添加Lora后解剖学问题可能会得到改善。
3.本次测试发现9.1GB的t5xxl_fp16.safetensors对于改善模型的解剖学问题,大大强于4.5GB的t5xxl_fp8_e4m3fn.safetensors,建议大家有条件都用fp16的t5xxl。
4.本次测试发现上述所有模型都只支持0.24GB的clip_l.safetensors,不支持1.3GB的clip_g.safetensors,原因尚不明确。
5.个别宣传较低步数即可出图的模型,由于在测试中生图质量过低导致本人无法接受,强制按照4的倍数提升生图步数。