Flux大模型图片生成速度对比测试

记录进步,分享资源,传承知识,从我做起,复现第一代互联网精神。

发布时间:2024年11月18日

一、测试时间

2024-11-18

二、测试环境

硬件:64GB 物理内存 + RTX4060Ti 16GB 显存
软件:Windows11 + 秋叶ComfyUI一体包 + Python 3.10 + torch 2.41 + cuda12.4
工作流: Flux基础文生图
提示词: 1girl,

三、实验方法

每个模型生成一张图片,连续生成三次,查看控制台“提示词执行时间”秒数,去掉其中最大最小值,剩余一个有效成绩四舍五入取整数秒。

四、测试结果

五、结果说明

1.本测试结果仅对应本人所使用的软硬件环境和设置参数,不代表模型在其他环境、参数下的生图能力,请理性对待。

2.本次测试未使用Lora,部分模型因严重解剖学错误,不予记录生图时间,但实际时间成绩与同体积同步数的其他模型基本相当,添加Lora后解剖学问题可能会得到改善。

3.本次测试发现9.1GB的t5xxl_fp16.safetensors对于改善模型的解剖学问题,大大强于4.5GB的t5xxl_fp8_e4m3fn.safetensors,建议大家有条件都用fp16的t5xxl。

4.本次测试发现上述所有模型都只支持0.24GB的clip_l.safetensors,不支持1.3GB的clip_g.safetensors,原因尚不明确。

5.个别宣传较低步数即可出图的模型,由于在测试中生图质量过低导致本人无法接受,强制按照4的倍数提升生图步数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值