图像标注工具X-Anylabeling

本文详细介绍了X-AnyLabeling的两种使用方式:GUI版本的下载和配置,以及源码下载、依赖安装和内置模型加载的步骤。特别关注了如何解决加载内置模型的问题,包括Windows环境下的路径设置和自定义模型的加载方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

X-Anylabeling使用细节

官方给出的两种使用方式

  1. 直接下载编译好的GUI版本,打开即用。下载地址
  2. 下载源码运行。下载地址

方式一

直接在GitHub release上下载 Releases · CVHub520/X-AnyLabeling · GitHub

或者在百度网盘下载,官方链接

首先查看X-Anylabeling标注工具相应的版本,然后根据你电脑的硬件设备选择对应的系统以及CPU还是GPU

方式二

1、源码下载

通过下载源码运行,也是官方比较建议的构建方式,这样可以保证体验到最新的功能和更稳定的性能体验。

GitHub下载地址:https://github.com/CVHub520/X-AnyLabeling/

2、安装依赖

使用Pycharm打开刚才下载好的X-Anylabeling-main文件夹

首先先激活你的pytorch环境

然后安装依赖

目前X-Anylabeling针对不同的运行环境提供了多种依赖文件:

在这里我选择的是requirements.txt依赖文件,在终端上输入一下命令进行环境配置:

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

根据自身网速,稍等一会即可安装完成

3、启动工具

直接打开X-Anylabeling-main-->anylabeling文件夹下的app.py文件,鼠标右键直接运行即可

显示该界面即为打开成功

配置 Windows 中的环境变量是为了某些命令在 CMD 中可以被识别以及用于多应用之间的交互。

加载内置模型时下载失败

官方提供的所有内置模型下载地址:X-AnyLabeling/docs/zh_cn/model_zoo.md at main · CVHub520/X-AnyLabeling · GitHub

首先根据上方链接下载你所需要的内置模型,下面我们以Edge-SAM为例子

当你直接软件中加载内置模型过慢或者加载失败时候,可以根据内置模型的名字Edge-SAM,在内置模型下载官网上直接选择相应的通道进行下载,一定要看清楚,有的模型分为encoder和decoder,需要下载两个预训练模型。这里Edge-SAM九需要分别下载edge_sam_encoder.onnx和edge_sam_decoder.onnx

然后将这两个预训练模型直接放到一个任意的英文文件夹内就行(记住存放路径)。在这里我的存放路径是G:\pre_model\edge_sam (说明一下我的是windows系统)。最后更改GX-AnyLabeling-main\anylabeling\configs\auto_labeling文件夹下的.yaml文件中的路径。Edge-SAM模型对应的是edge_sam.yaml,直接用记事本打开即可,更改对应的encoder_model_path和decoder_model_path即可。

重新加载内置模型,打开软件之后首先选择加载自定义模型,然后选中你更改之后的那个.yaml文件直接打开即可

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值