X-AnyLabeling使用教程

X-AnyLabeling下载链接:
https://github.com/CVHub520/X-AnyLabeling/releases/tag/v2.3.6
模型下载地址:
https://github.com/CVHub520/X-AnyLabeling/releases/
加载自定义模型文档:
https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/custom_model.md

1.AI 模型自动分割标注使用教程在这里插入图片描述
2.AI 模型自动目标检测标注使用教程
在这里插入图片描述
3.加载自定义模型
在这里插入图片描述
在这里插入图片描述
4.常见模型config.yaml设置
(1)edge sam config.yaml

type: edge_sam
name: edge_sam-r20231213
display_name: EdgeSAM
encoder_model_path: edge_sam_encoder.onnx
decoder_model_path: edge_sam_decoder.onnx

(2)yolov8-pose config.yaml

type: yolov8_pose
name: yolov8n-pose-r20231103
display_name: YOLOv8n-Pose Ultralytics
model_path: yolov8n-pose.onnx
confidence_threshold: 0.5
nms_threshold: 0.6
show_boxes: True
classes:
  - person
keypoints:
  - nose
  - left_eye
  - right_eye
  - left_ear
  - right_ear
  - left_shoulder
  - right_shoulder
  - left_elbow
  - right_elbow
  - left_wrist
  - right_wrist
  - left_hip
  - right_hip
  - left_knee
  - right_knee
  - left_ankle
  - right_ankle

(3)yolov10l config.yaml

classes:
- person
- bicycle
- car
- motorcycle
- airplane
- bus
- train
- truck
- boat
- traffic light
- fire hydrant
- stop sign
- parking meter
- bench
- bird
- cat
- dog
- horse
- sheep
- cow
- elephant
- bear
- zebra
- giraffe
- backpack
- umbrella
- handbag
- tie
- suitcase
- frisbee
- skis
- snowboard
- sports ball
- kite
- baseball bat
- baseball glove
- skateboard
- surfboard
- tennis racket
- bottle
- wine glass
- cup
- fork
- knife
- spoon
- bowl
- banana
- apple
- sandwich
- orange
- broccoli
- carrot
- hot dog
- pizza
- donut
- cake
- chair
- couch
- potted plant
- bed
- dining table
- toilet
- tv
- laptop
- mouse
- remote
- keyboard
- cell phone
- microwave
- oven
- toaster
- sink
- refrigerator
- book
- clock
- vase
- scissors
- teddy bear
- hair drier
- toothbrush
confidence_threshold: 0.45
display_name: YOLOv10l Ultralytics
has_downloaded: true
input_height: 640
input_width: 640
model_path: yolov10l.onnx
name: yolov10l-r20240525
nms_threshold: 0.45
score_threshold: 0.5
type: yolov10

注:classes不能缺失或替换顺序,否则即使加载模型成功,label不正确

5.一次运行所有图片
在这里插入图片描述

6.已经标注文件导入标注信息
导入后,覆盖标注信息
在这里插入图片描述
7. json文件更换为其它格式文件,如VOC .xml
在这里插入图片描述

x-任意标记是指在机器学习中,用于对数据样本进行分类或标记的一种方法。在x-任意标记中,不同于传统的监督学习,在训练数据中,并不需要为每个样本都提供准确的标记,而是允许某些样本没有标记,或者标记不准确。 x-任意标记的主要应用场景之一是在大规模数据集中,由于标记样本需要大量的人工成本和时间,因此很难获得所有样本的准确标记。借助x-任意标记算法,我们可以使用部分标记样本进行模型训练,以更高效地处理大规模数据。 x-任意标记算法主要基于隐变量模型或者半监督学习的思想,通过对未标记样本进行推断,预测其标记,从而得到更全面的数据集用于模型训练。常见的x-任意标记算法有多重标签学习、协同半监督学习等。 然而,x-任意标记也面临一些挑战。首先,由于未标记样本的标记不确定性,x-任意标记可能引入噪声,对模型的性能造成影响。其次,x-任意标记算法需要较强的数据推断和分析能力,对计算资源要求较高。此外,对于某些特定类型的数据,如图像、语音等,x-任意标记算法的应用可能更加复杂。 总的来说,x-任意标记是一种在机器学习中处理数据样本的方法,可以用于更高效地处理大规模数据,但也需要面对标记不确定性和计算资源要求高的挑战。在实际应用中,我们需要根据具体任务和数据特点选择适合的x-任意标记算法,并注意其潜在限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值