121
Easy
题目描述:
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
思路:
当天买入当天卖出不会影响最终结果。所以只需要遍历一次,对于第i
天,计算在这天卖出能获取的最大利润(遍历的过程中维护第i
天之前的最小价格即可),然后取个最大值即可。
class Solution {
public int maxProfit(int[] prices) {
int min = prices[0], ans = 0;
for (int i = 0; i < prices.length; i++) {
min = Math.min(min, prices[i]);
ans = Math.max(ans, prices[i] - min);
}
return ans;
}
}
122
medium
在121的基础上,不限制交易次数。但是任何时候最多只能持有一股。即必须先完成一笔交易,才能进行下一笔。
思路:
由于不限制交易次数,我们可以采用贪心的策略,只要出现某一天的价格大于前一天,就进行一次交易。即把全部的递增区间给累加起来,就能得到最大的利润。
贪心:
class Solution {
public int maxProfit(int[] prices) {
int ans = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1]) {
ans += prices[i] - prices[i - 1];
}
}
return ans;
}
}
动态规划:
也可以考虑用动规来做,这也是比较通用的做法。
每天结束时,只会有2种状态:持股 or 不持股。
所以这样来设计状态表示:
dp[i][0]
表示,在第i
天结束时,并且不持股,累计获得的最大利润。
dp[i][1]
表示,在第i
天结束时,并且持股,累计获得的最大利润。
那么最终答案就是dp[n - 1][0]
,即最后一天结束时,不持股,累计获得的最大利润。
状态转移:
根据前一天的状态直接转移即可
当天不持股,可能是昨天就不持股了,或者昨天持股但今天卖出了。
dp[i][0] = max {dp[i - 1][0], dp[i - 1][1] + prices[i]}
当天持股,可能是昨天就持股了,或者昨天没持股但今天买入了。
dp[i][1] = max {dp[i - 1][1], dp[i - 1][0] - prices[i]}
边界:
dp[0][0] = 0
第一天啥也不做
dp[0][1] = -prices[0]
第一天买入
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2];
dp[0][1] = -prices[0];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
}
return dp[n - 1][0];
}
}
滚动数组优化:由于每一天有2个状态,且分别只依赖前一天的2个状态,所以可以优化为常数级空间复杂度。
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int hold = -prices[0]; // 当天持股
int notHold = 0; // 当天不持股
for (int i = 1; i < n; i++) {
int oldHold = hold, oldNotHold = notHold;
hold = Math.max(oldHold, oldNotHold - prices[i]);
notHold = Math.max(oldNotHold, oldHold + prices[i]);
}
return notHold;
}
}
123
hard
在121的基础上,限制最多交易次数为2。
我们在状态表示中多加一个维度,把交易次数也包含进去即可。
dp[i][0][0]
:第i
天结束时,未持股状态,累计交易次数为0,获得的累计最大利润
dp[i][0][1]
:第i
天结束时,未持股状态,累计交易次数为1,获得的累计最大利润
dp[i][0][2]
:第i
天结束时,未持股状态,累计交易次数为2,获得的累计最大利润
dp[i][1][0]
:第i
天结束时,持股状态,累计交易次数为0,获得的累计最大利润
dp[i][1][1]
:第i
天结束时,持股状态,累计交易次数为1,获得的累计最大利润
dp[i][1][2]
:第i
天结束时,持股状态,累计交易次数为2,获得的累计最大利润
最终的答案是:max {dp[n - 1][0][0-2]}
最后一天不持股,进行了0次,1次,2次交易中的最大值
状态边界:
dp[0][0][0] = 0
第一天什么也不做
dp[0][0][1] = -inf
不可能的状态
dp[0][0][2] = -inf
不可能的状态
dp[0][1][0] = -prices[0]
第一天买入
dp[0][1][1] = -inf
不可能的状态
dp[0][1][2] = -inf
不可能的状态
class Solution {
// 注意 负无穷 不要设为 int 的最小值, 因为int最小值-1就会反转为int最大值
int INF = Integer.MIN_VALUE / 2;
public int maxProfit(int[] prices) {
int n = prices.length;
// 进行了多少次买卖
int [][][] dp = new int[n][2][3];
dp[0][0][0] = 0;
dp[0][0][1] = INF;
dp[0][0][2] = INF;
dp[0][1][0] = -prices[0];
dp[0][1][1] = INF;
dp[0][1][2] = INF;
for (int i = 1; i < n; i++) {
// 在当天卖出股票时, 交易次数+1
// dp[i][0][0] = 0; // 无用状态, 不列出
dp[i][0][1] = Math.max(dp[i - 1][0][1], dp[i - 1][1][0] + prices[i]);
dp[i][0][2] = Math.max(dp[i - 1][0][2], dp[i - 1][1][1] + prices[i]);
dp[i][1][0] = Math.max(dp[i - 1][1][0], -prices[i]);
dp[i][1][1] = Math.max(dp[i - 1][1][1], dp[i - 1][0][1] - prices[i]);
// dp[i][1][2] = INF // 无用状态, 不列出
}
return Math.max(Math.max(dp[n - 1][0][1], dp[n - 1][0][2]), 0);
}
}
188
hard
通用模型来了。这道题的交易次数通过参数k
进行控制。
思路与123这道题类似,不赘述。
class Solution {
int INF = Integer.MIN_VALUE / 2;
public int maxProfit(int k, int[] prices) {
if (prices.length <= 1) return 0;
int n = prices.length;
int[][][] dp = new int[n][2][k + 1];
// dp[0][0][0] = 0
// dp[0][0][1-k] = INF
// dp[0][1][0] = -prices[0]
// dp[0][1][1-k] = INF
// init
dp[0][1][0] = -prices[0];
for (int i = 1; i <= k; i++) {
dp[0][0][i] = dp[0][1][i] = INF;
}
for (int i = 1; i < n; i++) {
// dp[i][0][0-k]
// dp[i][1][0-k]
dp[i][0][0] = 0;
dp[i][1][0] = Math.max(dp[i - 1][1][0], dp[i - 1][0][0] - prices[i]);
for (int j = 1; j <= k; j++) {
dp[i][0][j] = Math.max(dp[i - 1][0][j], dp[i - 1][1][j - 1] + prices[i]);
dp[i][1][j] = Math.max(dp[i - 1][1][j], dp[i - 1][0][j] - prices[i]);
}
}
int ans = 0;
for (int i = 1; i <= k; i++) {
ans = Math.max(ans, dp[n - 1][0][i]);
}
return ans;
}
}
309
medium
在122这道题的基础上,增加了冷冻期。不限制交易次数,但当天若卖出股票,则第二天无法买入(需要隔一天)。相当于技能有了CD。
思路也比较简单,对于当天是否卖出股票这一信息,我们在状态表示中额外增加一个维度。
dp[i][0][0]
:第i
天结束时,未持股,且当天没有卖出股票。
dp[i][0][1]
:第i
天结束时,未持股,且当天卖出股票。
dp[i][1][0]
:第i
天结束时,持股,且当天没有卖出股票。
dp[i][1][1]
:第i
天结束时,持股,且当天卖出股票。(不可能的状态)
class Solution {
int INF = Integer.MIN_VALUE / 2;
public int maxProfit(int[] prices) {
int n = prices.length;
// 最后一个参数是, 当天是否卖出, 若卖出则第二天无法购买
int[][][] dp = new int[n][2][2];
dp[0][0][0] = 0;
dp[0][0][1] = INF;
dp[0][1][0] = -prices[0];
dp[0][1][1] = INF;
for (int i = 1; i < n; i++) {
dp[i][0][0] = Math.max(dp[i - 1][0][0], dp[i - 1][0][1]);
dp[i][0][1] = dp[i - 1][1][0] + prices[i];
dp[i][1][0] = Math.max(dp[i - 1][1][0], dp[i - 1][0][0] - prices[i]);
dp[i][1][1] = INF;
}
return Math.max(dp[n - 1][0][0], dp[n - 1][0][1]);
}
}
714
medium
在122的基础上,增加了手续费。不限交易次数,但每笔交易都需要额外产生一笔手续费。
思路也很简单,在状态转移方程中加上手续费的计算即可。
class Solution {
public int maxProfit(int[] prices, int fee) {
int n = prices.length;
int[][] dp = new int[n][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
}
return dp[n - 1][0];
}
}
总结:股票类问题,可以有一个通用的思路。考虑每天结束时,持股状态,并且把限制条件添加到状态表示中进行维护即可。
参考这篇文章