命名实体识别:GITHUB上的 ner_english 配置过程

本文档详细介绍了如何配置和运行GITHUB上的ner_english项目,包括克隆项目、设置Python和Tensorflow环境、安装依赖库、解决keras_contrib和项目本身存在的问题,以成功运行命名实体识别任务。
摘要由CSDN通过智能技术生成

1. clone ner_english到本地,按照readme.md下载数据

git clone https://github.com/yanqiangmiffy/ner-english.git

2. 配置基本环境(要按顺序安装)

  1. python3.7(别装太高版本,会不兼容,建议安装Anaconda,提供多版本Python环境的管理,教程在这)
  2. Tensorflow1.15.0(在指定环境的命令行输入以下命令)
pip install tensorflow==1.15.0
  1. 安装CUDA、cuDNN,版本也要对应,教程在这
  2. keras 2.3.1(在指定环境的命令行输入以下命令)
pip install keras==2.3.1

3. 进一步配置环境

  1. 安装
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值