【期中复习】深度学习

机器(深度)学习的四大核心要素

数据、模型、性能度量(目标函数)、优化方法

为什么深度学习,不增加网络宽度

  • 增加深度使得学习高层次、抽象特征成为可能
  • 相比于增加宽度,增加深度的学习效率更高。比如对于一些要学习的多项式函数,浅层网络需要指数增长的神经元个数,其拟合效果才能匹配上多项式增长的深层网络
    宽度的优点:增加宽度会增加模型的记忆能力

黑盒模型的问题

数据安全隐患、输出不可信、模型改进局限、模型应用局限

计算图

在这里插入图片描述

线性神经网络

  • 模型
    在这里插入图片描述

  • 性能度量
    在这里插入图片描述

  • 优化方法
    在这里插入图片描述

梯度下降

在这里插入图片描述

学习率

在这里插入图片描述

优化方法

在这里插入图片描述

softmax函数用于多分类

在这里插入图片描述

  • 可用:量化样本间的相对大小(等比例缩放不变)
  • 概率:每个样本取值范围[0,1],总和等于1
  • 可训练:可微分

交叉熵

在这里插入图片描述

线性回归与softmax回归的对比

在这里插入图片描述

为什么需要非线性激活函数

在这里插入图片描述
因为是线性的,神经网络虽然引入了隐藏层,却依然等价于一个单层神经网络

感知机

在这里插入图片描述
在这里插入图片描述

线性回归、softmax回归、感知机和支持向量机的比较

在这里插入图片描述

sigmoid激活函数

在这里插入图片描述

  • 优点
    (0-1),平滑、多标签分类
  • 缺点
    梯度消失、更新效率低

双曲正切(tanh)激活函数

在这里插入图片描述

  • 优点
    (-1,1),平滑,更新效率高
  • 缺点
    梯度消失

线性(ReLU)修正函数

在这里插入图片描述
在这里插入图片描述

MLP

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

K折交叉验证

在这里插入图片描述
在这里插入图片描述

估计模型的复杂度

在这里插入图片描述

数据复杂度

在这里插入图片描述

欠拟合和过拟合

在这里插入图片描述

欠拟合和过拟合的原因

在这里插入图片描述

正则化

在这里插入图片描述

Dropout

在这里插入图片描述

梯度爆炸和梯度消失

在这里插入图片描述

在这里插入图片描述

权重初始化

在这里插入图片描述

参数初始化

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

verse_armour

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值