Optimizing Quantum Circuits via ZX Diagrams using Reinforcement Learning and Graph Neural Networks

使用强化学习和图神经网络通过ZX图优化量子电路

摘要

量子计算目前受到噪声的严重影响,特别是双量子比特门带来的噪声。在噪声中等规模量子硬件上,减少双量子比特门数量至关重要。我们提出了基于ZX演算、图神经网络和强化学习的量子电路优化框架。通过结合强化学习与树搜索,我们的方法解决了选择最优ZX演算重写规则序列的挑战。我们的方法训练了直接在ZX图上操作的强化学习策略,能够发现任意优化规则,显著减少CNOT门数量。实验表明该方法与最先进电路优化器竞争力相当,并在大规模随机电路集上展现出良好的泛化能力。

I. 引言

量子计算当前主要受限于噪声影响,特别是双量子比特门操作。我们提出结合ZX演算、图神经网络和强化学习的优化框架,通过树搜索策略选择最优重写规则序列,突破人工设计启发式规则的限制。

II. ZX演算

A. ZX图表示基础

ZX演算使用Z蜘蛛和X蜘蛛作为基本元素,通过线连接形成张量网络。CNOT门可表示为Z蜘蛛和X蜘蛛的组合,任何量子电路都可以转化为ZX图表示。

B. 重写规则完备性

ZX演算的完备重写规则集能够将任意等效图相互转换。我们选择规则时权衡了规则完备性、动作空间大小和图结构变化复杂度。

III. 强化学习模型

A. 将ZX图优化表述为RL问题

将ZX图优化建模为马尔可夫决策过程(MDP):

  • 状态空间(S):ZX图结构
  • 动作空间(A):ZX重写规则及其应用位置
  • 奖励函数®:CNOT门数量减少程度

B. 基于RL的ZX重写训练与推理

使用图神经网络处理ZX图特征:

  • 训练阶段:在随机生成电路集上优化策略
  • 推理阶段:冻结策略进行电路优化
  • 电路提取:将优化后的ZX图转换回量子电路

C. 基于树的搜索策略

维护搜索树实现回溯机制:

  • 节点选择策略:基于图神经网络预测的权重分布
  • 价值函数估计:评估节点优化潜力
  • 奖励计算:基于最优电路CNOT门减少比例

IV. 实验

A. 实验设置

  • GNN架构:4层GCN网络,宽度为规则数的16倍
  • 训练参数:100万训练步,8并行环境,学习率3e-4
  • 评估指标:CNOT门减少数量

B. 电路提取流程

分阶段提取策略:

  1. 初级提取:最小预处理
  2. 中高级提取:应用枢轴规则和局部补全规则
  3. 完全优化:PyZX的full_reduce方法

C. 训练与验证数据集

  • 数据集(i):5量子比特电路,CNOT/H/Rx/Rz比例为6:2:1:1
  • 数据集(ii):纯CNOT门电路
  • 数据集(iii):均衡门比例电路

D. 实验结果分析

在训练集上:

  • RL方法平均CNOT门27.3个,优于PyZX full_reduce的31.8个
  • 电路提取器不同等级表现验证优化有效性

在验证集上:

  • 纯CNOT电路优化接近暴力搜索最优解
  • 均衡门比例电路优化效果显著

E. 大规模电路的窥孔优化

50量子比特/2000门电路优化:

  • 使用MLP替代GNN提升计算效率
  • 组合随机子电路生成结构化大电路
  • 优化效果显著优于Qiskit和PyZX

V. 未来工作

  1. 扩展完整ZX规则集
  2. 提升图神经网络泛化能力
  3. 开发大规模量子电路基准测试集
  4. 探索T门数量优化等新目标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

verse_armour

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值