使用强化学习和图神经网络通过ZX图优化量子电路
摘要
量子计算目前受到噪声的严重影响,特别是双量子比特门带来的噪声。在噪声中等规模量子硬件上,减少双量子比特门数量至关重要。我们提出了基于ZX演算、图神经网络和强化学习的量子电路优化框架。通过结合强化学习与树搜索,我们的方法解决了选择最优ZX演算重写规则序列的挑战。我们的方法训练了直接在ZX图上操作的强化学习策略,能够发现任意优化规则,显著减少CNOT门数量。实验表明该方法与最先进电路优化器竞争力相当,并在大规模随机电路集上展现出良好的泛化能力。
I. 引言
量子计算当前主要受限于噪声影响,特别是双量子比特门操作。我们提出结合ZX演算、图神经网络和强化学习的优化框架,通过树搜索策略选择最优重写规则序列,突破人工设计启发式规则的限制。
II. ZX演算
A. ZX图表示基础
ZX演算使用Z蜘蛛和X蜘蛛作为基本元素,通过线连接形成张量网络。CNOT门可表示为Z蜘蛛和X蜘蛛的组合,任何量子电路都可以转化为ZX图表示。
B. 重写规则完备性
ZX演算的完备重写规则集能够将任意等效图相互转换。我们选择规则时权衡了规则完备性、动作空间大小和图结构变化复杂度。
III. 强化学习模型
A. 将ZX图优化表述为RL问题
将ZX图优化建模为马尔可夫决策过程(MDP):
- 状态空间(S):ZX图结构
- 动作空间(A):ZX重写规则及其应用位置
- 奖励函数®:CNOT门数量减少程度
B. 基于RL的ZX重写训练与推理
使用图神经网络处理ZX图特征:
- 训练阶段:在随机生成电路集上优化策略
- 推理阶段:冻结策略进行电路优化
- 电路提取:将优化后的ZX图转换回量子电路
C. 基于树的搜索策略
维护搜索树实现回溯机制:
- 节点选择策略:基于图神经网络预测的权重分布
- 价值函数估计:评估节点优化潜力
- 奖励计算:基于最优电路CNOT门减少比例
IV. 实验
A. 实验设置
- GNN架构:4层GCN网络,宽度为规则数的16倍
- 训练参数:100万训练步,8并行环境,学习率3e-4
- 评估指标:CNOT门减少数量
B. 电路提取流程
分阶段提取策略:
- 初级提取:最小预处理
- 中高级提取:应用枢轴规则和局部补全规则
- 完全优化:PyZX的full_reduce方法
C. 训练与验证数据集
- 数据集(i):5量子比特电路,CNOT/H/Rx/Rz比例为6:2:1:1
- 数据集(ii):纯CNOT门电路
- 数据集(iii):均衡门比例电路
D. 实验结果分析
在训练集上:
- RL方法平均CNOT门27.3个,优于PyZX full_reduce的31.8个
- 电路提取器不同等级表现验证优化有效性
在验证集上:
- 纯CNOT电路优化接近暴力搜索最优解
- 均衡门比例电路优化效果显著
E. 大规模电路的窥孔优化
50量子比特/2000门电路优化:
- 使用MLP替代GNN提升计算效率
- 组合随机子电路生成结构化大电路
- 优化效果显著优于Qiskit和PyZX
V. 未来工作
- 扩展完整ZX规则集
- 提升图神经网络泛化能力
- 开发大规模量子电路基准测试集
- 探索T门数量优化等新目标