016基于CNN卷积网络的人脸识别打卡签到_resnet_mobilenet_efficientnet等

本文介绍了一款基于CNN卷积网络的人脸识别打卡签到系统,涉及数据集处理、模型训练(如ResNet、MobileNet和EfficientNet)以及实时人脸识别功能。文章详细描述了代码流程,从数据生成到模型识别,强调了在实际应用中的安全性与隐私问题。
摘要由CSDN通过智能技术生成

代码下载和视频演示地址:

016基于CNN卷积网络的人脸识别打卡签到_resnet_mobilenet_efficientnet等_哔哩哔哩_bilibili

效果演示图如下:

这是一个人脸打卡签到代码

代码展示界面如下:

 代码主要由01,02,03运行即可。

运行01数据集文本生成制作.py会将dataset文件下的数据集中的图片路径保存在txt文本中。

02train.py会读取txt文本中的图片进行训练模型,训练得到的模型保存在weights文件夹下,

运行03real_time_face_recognition.py会打开摄像头,将捕捉到的帧传给模型识别,根据若干张图片中识别的结果最多的对象,为最后打开的结果。

最后会保存打卡人物和时间到csv文件内。

​人脸识别是一种将人脸图像或视频中的人脸进行自动检测、识别和验证的技术。它是生物特征识别的一种形式,通过分析人脸的几何特征、颜色信息和纹理特征等,将人脸与已知的人脸库进行比对或者判断是否匹配。

人脸识别技术通常包括以下几个步骤:

人脸检测:首先从输入的图像或视频中检测出人脸区域,通常使用基于机器学习或深度学习的人脸检测算法,如Haar级联分类器、HOG特征+SVM、卷积神经网络等。

特征提取:提取人脸区域的特征表示,常用的方法包括主成分分析ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值