什么是参数估计

本文介绍了在信号处理中,如何通过无偏估计和极大似然估计方法来估计未知的直流信号均值,以及使用最小均方误差和方差作为评估指标。特别提到在高斯噪声背景下,数据服从正态分布,最大似然估计与最小二乘法在已知方差情况下的等价性。
摘要由CSDN通过智能技术生成

https://www.zhihu.com/column/c_1370754684689416192

什么是参数估计?

假定信号 μ μ μ(未知)是一个直流信号,在一定的噪声的条件下,得到的信号可以表示如下:
x ( t ) = μ + n ( t ) \begin{equation} x(t)=μ+n(t) \end{equation} x(t)=μ+n(t)
其中, n ( t ) n(t) n(t)为连续的高斯分布的噪声,均值和方差均已知, n ( t ) ~ N ( 0 , σ 2 ) n(t)~N(0,\sigma^2) n(t)N(0,σ2)

那么我们采集到的数据也服从高斯分布,有 x ( t ) ~ N ( μ , σ 2 ) x(t)~N(\mu,\sigma^2) x(t)N(μ,σ2)

显然,我们是已知右边的情况下来得到左边的 x ( t ) x(t) x(t) ,因此可以知道 x ( t ) x(t) x(t)应该是什么样子的。

但真实情况是,我们只能获取一系列的 x ( t ) x(t) x(t) ,但并不能准确得知他的均值和方差(特征),那么我们需要通过数学的方法去估计数据的特征是什么,这个过程就叫做参数估计

无偏估计

对于模型 x ( t ) = μ + n ( t ) x(t)=\mu +n(t) x(t)=μ+n(t)而言

采集到的数据可以表示为 X = [ x ( t 1 ) , x ( t 2 ) , ⋯   , x ( t n ) ] ′ X=\left[x(t_1),x(t_2), \cdots,x(t_n) \right]^\prime X=[x(t1),x(t2),,x(tn)],对于采集到的数据,我们可以估计出均值
μ ^ = 1 N ∑ i = 1 N x ( t i ) \begin{equation} \hat{\mu}=\frac{1}{N}\sum_{i=1}^{N}x(t_i) \end{equation} μ^=N1i=1Nx(ti)
注意:这里的 μ \mu μ写的是 μ ^ \hat{\mu} μ^,表示的是一个估计量,也就是说使用一直系列的测量结果 x ( t ) x(t) x(t)去估计原来的一个均值情况,所以估计均值 μ \mu μ也是在做参数估计。

对于估计值 μ ^ \hat{\mu} μ^,我们当然希望他们越接近 μ \mu μ(常量)越好,因为采集到的不同的 X X X,其均值和方差的估计值都会变化(估计值是随机变量),那怎么衡量呢?我们首先自然可以想到用数学期望来衡量:
E ( μ ^ ) = μ \begin{equation} E(\hat{\mu})=\mu \end{equation} E(μ^)=μ
当估计值期望等于原始的均值时候,这时候的估计,我们称作无偏估计。

其次,我们也会考虑数据在均值附近的一个波动范围内,我们用MSE和方差作为代价函数(cost function)去衡量其准确性。

MSE(最小均方误差)的表达式:
M S E = E ( ( μ ^ − μ ) 2 ) \begin{equation} MSE=E((\hat{\mu}-\mu)^2) \end{equation} MSE=E((μ^μ)2)
方差的表达式:
V a r ( μ ^ ) = E ( μ ^ − E ( μ ^ ) ) \begin{equation} Var(\hat{\mu})=E(\hat{\mu}-E({\hat{\mu}})) \end{equation} Var(μ^)=E(μ^E(μ^))
可以发现,当 μ ^ \hat{\mu} μ^是无偏估计的时候,MSE和方差其实是同样的形式,在这种情况下,两种方法的衡量结果是一样的的,其余时候均不一样。因此可以用不同的方式请评价估计值的好坏。

极大似然估计

同样的,对于模型 x ( t ) = μ + n ( t ) x(t)=\mu +n(t) x(t)=μ+n(t),其中 n ( t ) n(t) n(t)服从 ( 0 , σ 2 ) (0,\sigma^2) (0,σ2)的正态分布,其中方差 σ 2 \sigma^2 σ2已知,我们需要估计均值。

采集到的数据可以表示为 X = [ x ( t 1 ) , x ( t 2 ) , ⋯   , x ( t N ) ] ′ X=\left[ x(t_1),x(t_2),\cdots,x(t_N) \right]^\prime X=[x(t1),x(t2),,x(tN)]

假定我们知道 μ \mu μ的值,那么 x ( t ) ∼ N ( μ , σ 2 ) x(t) \sim N(\mu,\sigma^2) x(t)N(μ,σ2),此时我们可以用正态分布的概率密度来表示 x x x的可能取值:
P ( x ∣ μ ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) \begin{equation} P(x|\mu)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left( -\frac{(x-\mu)^2}{2\sigma^2} \right) \end{equation} P(xμ)=2πσ2 1exp(2σ2(xμ)2)

那么,一系列的采集数据,我们可以用联合概率密度来表示:
P ( x ( t 1 ) , x ( t 2 ) , ⋯   , x ( t N ) ∣ μ ) = 1 2 π σ 2 exp ⁡ ( − ∑ i = 1 N ( x ( t i ) − μ ) 2 2 σ 2 ) \begin{equation} P(x(t_1),x(t_2),\cdots,x(t_N)|\mu)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left( -\frac{\sum_{i=1}^{N}(x(t_i)-\mu)^2}{2\sigma^2} \right) \end{equation} P(x(t1),x(t2),,x(tN)μ)=2πσ2 1exp(2σ2i=1N(x(ti)μ)2)
在正态分布中,由于 3 σ 3\sigma 3σ原则的存在,大部分点都在这个范围内(即这个范围内的概率密度函数的值更高)。

对于我们已经确定的样本点, x ( t 1 ) x(t_1) x(t1) x ( t N ) x(t_N) x(tN),它们大部分也应该在这个范围内。因此我们需要找到一个合适的 μ \mu μ,使得样本点尽可能的都落在靠近 μ \mu μ的地方,使得概率 P P P最大。

也就是说,我们可以用通过 P ( x ( t 1 ) , x ( t 2 ) , ⋯   , x ( t N ) ∣ μ ) P(x(t_1),x(t_2),\cdots,x(t_N)|\mu) P(x(t1),x(t2),,x(tN)μ)最大来找到这个合适的 μ \mu μ,这就是最大似然估计的含义。

接下来是一个简单的推导过程:

对于联合概率密度函数,为了消除e的指数,我们可以使用对数
ln ⁡ ( P ( x ( t 1 ) , ⋯   , x ( t N ) ∣ μ ) ) = − ln ⁡ ( 2 π σ 2 ) − ∑ i = 1 N ( x ( t i ) − μ ) 2 2 μ 2 \ln(P(x(t_{1}), \cdots, x(t_{N}) | \mu)) = - \ln (\sqrt{2 \pi \sigma ^2} ) - \frac {\sum_{i=1} ^ N ( x ( t _ { i } ) - \mu ) ^ { 2 } } { 2 \mu ^ { 2 } } ln(P(x(t1),,x(tN)μ))=ln(2πσ2 )2μ2i=1N(x(ti)μ)2
要求 P P P的最大值,即求右边最大,因为 σ 2 \sigma^2 σ2为已知的量,所以要求 ∑ i = 1 N ( x ( t i ) − μ ) 2 \sum_{i=1} ^ N ( x ( t _ { i } ) - \mu ) ^ { 2 } i=1N(x(ti)μ)2的最小值。
∑ i = 1 N ( x ( t i ) − μ ) 2 \begin{equation} \sum_{i=1} ^ N ( x ( t _ { i } ) - \mu ) ^ { 2 } \end{equation} i=1N(x(ti)μ)2
注意,这个式子其实就是最小二乘法,因此可以得到结论,当数据符合高斯正态分布时,且已知方差的时候,求均值的估计值,也就是求 x ( t i ) x(t_i) x(ti)的最小二乘法。此时最大似然估计结果和最小二乘法结果相同。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值