微分方程

微分方程的基本概念

  1. 表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称方程
  2. 微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶,如 x3y+x2y4xy=3x2 x 3 y ‴ + x 2 y ″ − 4 x y ′ = 3 x 2 是三阶微分方程, y(4)4y+10y12y+5y=sin2x y ( 4 ) − 4 y ‴ + 10 y ″ − 12 y ′ + 5 y = sin ⁡ 2 x 是四阶微分方程
  3. 一般的, n n 阶微分方程的形式是
    F(x,y,y...,y(n))=0
    ,其中 y(n) y ( n ) 必须出现,而 x,y,y,...,y(n1) x , y , y ′ , . . . , y ( n − 1 ) 等变量则可以不出现,例如 n n 阶微分方程
    y(n)+1=0
  4. 首先建立微分方程,然后找出满足微分方程的函数(解微分方程),把这函数代入微分方程能使该方程称为恒等式。这个函数就叫做该微分方程的解
  5. 如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。如 y=x2+C y = x 2 + C dydx=2x d y d x = 2 x 的通解
  6. 确定了通解中的任意常数以后,就得到微分方程的特解。例如 y=x2+1 y = x 2 + 1 dydx=2x d y d x = 2 x 满足条件 x=1 x = 1 y=2 y = 2 的特解
  7. 求微分方程 y=f(x,y) y ′ = f ( x , y ) 满足初始条件 y|x=x0=y0 y | x = x 0 = y 0 的特解这样一个问题,叫做一阶微分方程的初值问题,记作
    {y=f(x,y)y|x=x0=y0 { y ′ = f ( x , y ) y | x = x 0 = y 0
  8. 微分方程的解的图形是一条曲线,叫做微分方程的积分曲线。上述初值问题的几何意义,就是求微分方程的通过点 (x0,y0) ( x 0 , y 0 ) 的那条积分曲线。二阶微分方程的初值问题
    {y=f(x,y,y)y|x=x0=y0,y|x=x0=y0 { y ″ = f ( x , y , y ′ ) y | x = x 0 = y 0 , y ′ | x = x 0 = y 0 ′
    的几何意义,是求微分方程的通过点 (x0,y0) ( x 0 , y 0 ) 且在该点处的切线斜率为 y0 y 0 ′ 的那条积分曲线

可分离变量的微分方程

  1. 一般的,如果一个一阶微分方程能写成
    g(y)dy=f(x)dx g ( y ) d y = f ( x ) d x
    的形式,就是说,能把微分方程写成一端只含 y y 的函数和dy,另一端只含 x x 的函数和dx,那么原方程就称为可分离变量的微分方程
  2. 例:求微分方程
    dydx=2xy(1) (1) d y d x = 2 x y
    的通解:
    上述方程式可分离变量的,分离变量后得:
    dyy=2xdx d y y = 2 x d x
    ,两端积分: dyy=2xdx ∫ d y y = ∫ 2 x d x ,得 ln|y|=x2+C1 ln ⁡ | y | = x 2 + C 1 ,从而 y=±ex2+C1=±eC1ex2 y = ± e x 2 + C 1 = ± e C 1 e x 2 。因为 ±eC1 ± e C 1 是任意非零常数,又 y0 y ≡ 0 也是方程(1)的解;故得方程(7)的通解
    y=Cex2 y = C e x 2

齐次方程

  1. 如果一阶微分方程可化为
    dydx=φ(yx)(1) (1) d y d x = φ ( y x )
    的形式,那么就称这方程为齐次方程。例如
    (xyy2)dx(x22xy)dy=0 ( x y − y 2 ) d x − ( x 2 − 2 x y ) d y = 0
    是齐次方程,因为它可化成
    dydx=yx(yx)212(yx) d y d x = y x − ( y x ) 2 1 − 2 ( y x )
  2. 例:解方程
    y2+x2dydx=xydydx y 2 + x 2 d y d x = x y d y d x
    ,原方程可写成
    dydx=y2xyx2=(yx)2yx1 d y d x = y 2 x y − x 2 = ( y x ) 2 y x − 1
    ,因此是齐次方程,令 yx=u y x = u ,则
    y=uxdydx=u+xdudx y = u x , d y d x = u + x d u d x
    ,于是原方程变为
    xdudx=uu1 x d u d x = u u − 1
    ,分离变量得
    uln|u|+C=ln|x| u − ln ⁡ | u | + C = ln ⁡ | x |
    ,或写为
    ln|xu|=u+C ln ⁡ | x u | = u + C
    ,将 yx y x 代入上式中的 u u ,便得到所给方程的通解为
    ln|y|=yx+C

一阶线性微分方程

线性方程

  1. 方程
    dydx+P(x)y=Q(x)(1) (1) d y d x + P ( x ) y = Q ( x )
    叫做一阶线性微分方程,因为它对于未知函数 y y 及其导数是一次方程。如果Q(x)0,则方程(1)称为齐次的;如果 Q(x)0 Q ( x ) ≠ 0 ,则方程(1)称为非齐次的
  2. 设(1)为非齐次线性方程,为了求出非齐次线性方程(1)的解,先把 Q(x) Q ( x ) 换成零而写出方程
    dydx+P(x)y=0(2) (2) d y d x + P ( x ) y = 0
    ,方程(2)叫做对应于非齐次线性方程(1)的齐次线性方程。方程(2)是可分离变量的,分离变量后得
    dyy=P(x)dx d y y = − P ( x ) d x
    ,两端积分,得
    ln|y|=0P(x)dx+C1 ln ⁡ | y | = 0 ∫ P ( x ) d x + C 1
    ,或
    y=CeP(x)dxC=±eC1 y = C e − ∫ P ( x ) d x ( C = ± e C 1 )
    ,这是对应的齐次线性方程(2)的通解
  3. 使用常数变易法来求非齐次线性方程(1)的通解,将(2)的通解中的 C C 换成x的未知函数 u(x) u ( x ) ,即作变换
    y=ueP(x)dx(3) (3) y = u e − ∫ P ( x ) d x
    ,于是
    dydx=ueP(x)dxuP(x)eP(x)dx(4) (4) d y d x = u ′ e − ∫ P ( x ) d x − u P ( x ) e − ∫ P ( x ) d x
    ,将(3)和(4)代入方程(1)得
    ueP(x)dxuP(x)eP(x)dx+P(x)ueP(x)dx=Q(x) u ′ e − ∫ P ( x ) d x − u P ( x ) e − ∫ P ( x ) d x + P ( x ) u e − ∫ P ( x ) d x = Q ( x )
    ,即
    ueP(x)dx=Q(x)u=Q(x)eP(x)dx u ′ e − ∫ P ( x ) d x = Q ( x ) , u ′ = Q ( x ) e ∫ P ( x ) d x
    ,两端积分,得
    u=Q(x)eP(x)dxdx+C u = ∫ Q ( x ) e ∫ P ( x ) d x d x + C
    ,把上式代入(3),便得非齐次线性方程(1)的通解
    y=eP(x)dx(Q(x)eP(x)dxdx+C)(5) (5) y = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C )
    ,把(5)式改写成两项之和
    y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx y = C e − ∫ P ( x ) d x + e − ∫ P ( x ) d x ∫ Q ( x ) e ∫ P ( x ) d x d x
    由此可知,一阶非齐次线性方程的通解等于对应的齐次方程的通解与非齐次方程的一个特解之和
  4. 例:求方程
    dydx2yx+1=(x+1)52 d y d x − 2 y x + 1 = ( x + 1 ) 5 2
    的通解.
    解:这是一个非齐次线性方程,先求对应的齐次方程的通解.
    dydx2x+1y=0 d y d x − 2 x + 1 y = 0 ,
    dyy=2dxx+1 d y y = 2 d x x + 1 ,
    ln|y|=2ln|x+1|+ln|C1| ln ⁡ | y | = 2 ln ⁡ | x + 1 | + ln ⁡ | C 1 | ,
    y=C(x+1)2(6) (6) y = C ( x + 1 ) 2
    ,那么
    dydx=u(x+1)2+2u(x+1) d y d x = u ′ ( x + 1 ) 2 + 2 u ( x + 1 )
    ,代入所给非齐次方程,得
    u=(x+1)12 u ′ = ( x + 1 ) 1 2
    ,两端积分,得
    u=23(x+1)32+C u = 2 3 ( x + 1 ) 3 2 + C
    ,再把上式代入(6)式,即得所求方程的通解为
    y=(x+1)2[23(x+1)32+C] y = ( x + 1 ) 2 [ 2 3 ( x + 1 ) 3 2 + C ]

可降阶的高阶微分方程

二阶及二阶以上的微分方程,即所谓高阶微分方程

y(n)=f(x) y ( n ) = f ( x ) 型的微分方程

  1. 微分方程
    y(n)=f(x)(2) (2) y ( n ) = f ( x )
    的右端仅含有自变量 x x ,容易看出,只要把y(n1)作为新的未知函数,那么(2)式就是新未知函数的一阶微分方程。两边积分,就得到一个 n n − 阶的微分方程
    y(n1)=f(x)dx+C1 y ( n − 1 ) = ∫ f ( x ) d x + C 1
    ,同理可得
    y(n2)=[f(x)dx+C1]dx+C2 y ( n − 2 ) = ∫ [ ∫ f ( x ) d x + C 1 ] d x + C 2
    ,依此法继续进行,接连积分 n n 次,便得到方程(2)的含有n个任意常数的通解
  2. 例:求微分方程
    y=e2xcosx y ‴ = e 2 x − cos ⁡ x
    的通解
    解:对所给方程接连积分三次,得:
    y=12e2xsinx+C y ″ = 1 2 e 2 x − sin ⁡ x + C
    y=14e2x+cosx+Cx+C2 y ′ = 1 4 e 2 x + cos ⁡ x + C x + C 2
    y=18e2x+sinx+C1x2+C2x+C3C1=C2 y = 1 8 e 2 x + sin ⁡ x + C 1 x 2 + C 2 x + C 3 ( C 1 = C 2 )
    这就是所求的通解

y=f(x,y) y ″ = f ( x , y ′ ) 型的微分方程

  1. 方程
    y=f(x,y)(7) (7) y ″ = f ( x , y ′ )
    的右端不显含未知函数 y y 。如果我们设y=p,那么
    y=dpdx=p y ″ = d p d x = p ′
    ,而方程(7)就成为
    p=f(x,p) p ′ = f ( x , p )
    。这是一个关于变量 xp x 、 p 的一阶微分方程,设其通解为
    p=φ(x,C1) p = φ ( x , C 1 )
    ,但是 p=dydx p = d y d x ,因此又得到一个一阶微分方程
    dydx=φ(x,C1) d y d x = φ ( x , C 1 )
    ,对它进行积分,便得到方程(7)的通解为
    y=φ(x,C1)dx+C2 y = ∫ φ ( x , C 1 ) d x + C 2
  2. 例:求微分方程
    (1+x2)y=2xy ( 1 + x 2 ) y ″ = 2 x y ′
    满足初始条件
    y|x=0=1y|x=0=3 y | x = 0 = 1 , y ′ | x = 0 = 3
    的特解
    解:所给方程式 y=f(x,y) y ″ = f ( x , y ′ ) 型的,设 y=p y ′ = p ,代入方程并分离变量后,有
    dpp=2x1+x2dx d p p = 2 x 1 + x 2 d x
    两端积分,得
    ln|p|=ln(1+x2)+C ln ⁡ | p | = ln ⁡ ( 1 + x 2 ) + C ,
    p=y=C1(1+x2)C1=±eC p = y ′ = C 1 ( 1 + x 2 ) ( C 1 = ± e C )
    ,由条件 y|x=0=3 y ′ | x = 0 = 3 ,得
    C1=3 C 1 = 3 ,
    所以
    y=3(1+x2) y ′ = 3 ( 1 + x 2 ) ,
    两端再积分,得
    y=x3+3x+C2 y = x 3 + 3 x + C 2
    。又由条件 y|x=0=1 y | x = 0 = 1 ,得
    C2=1 C 2 = 1
    ,于是所求的特解为
    y=x3+3x+1 y = x 3 + 3 x + 1

y=f(y,y) y ″ = f ( y , y ′ ) 型的微分方程

  1. 方程
    y=f(y,y)(11) (11) y ″ = f ( y , y ′ )
    中不明显地含自变量 x x ,为了求出它的解,我们令y=p,并利用复合函数的求导法则把 y y ″ 化为对 y y 的导数,即
    y=dpdx=dpdydydx=pdpdy
    ,这样,方程(11)就成为
    pdpdy=f(y,p) p d p d y = f ( y , p )
    这是一个关于变量 yp y 、 p 的一阶微分方程,设它的通解为
    y=p=φ(y,C1) y ′ = p = φ ( y , C 1 )
    ,分离变量并积分,便得方程(11)的通解为
    dyφ(y,C1)=x+C2 ∫ d y φ ( y , C 1 ) = x + C 2
  2. 例:求微分方程
    yyy2=0(12) (12) y y ″ − y ′ 2 = 0
    的通解
    解:方程(12)不明显地含自变量 x x ,设
    y=py=pdpdy
    代入方程(12),得
    ypdpdyp2=0 y p d p d y − p 2 = 0
    ,在 y0p0 y ≠ 0 、 p ≠ 0 时,约去 p p 并分离变量,得
    dpp=dyy
    。两端积分,得
    ln|p|=ln|y|+C ln ⁡ | p | = ln ⁡ | y | + C
    ,即
    p=C1yy=C1yC1=±eC p = C 1 y , 或 y ′ = C 1 y ( C 1 = ± e C )
    再分离变量并两端积分,便得方程(12)的通解为
    ln|y|=C1x+C2 ln ⁡ | y | = C 1 x + C 2 ′
    ,或
    y=C2eC1xC2=±eC2 y = C 2 e C 1 x ( C 2 = ± e C 2 ′ )

高阶线性微分方程

二阶线性微分方程举例

如方程

d2ydx2+P(x)dydx+Q(x)y=f(x) d 2 y d x 2 + P ( x ) d y d x + Q ( x ) y = f ( x )
叫做二阶线性微分方程,当方程右端 f(x)0 f ( x ) ≡ 0 时,方程叫做齐次的;当 f(x)0 f ( x ) ≠ 0 时,方程叫做非齐次的

线性微分方程的解的结构

对于二阶齐次线性方程

y+P(x)y+Q(x)y=0(6) (6) y ″ + P ( x ) y ′ + Q ( x ) y = 0

1. 如果函数 y1(x) y 1 ′ ( x ) y2(x) y 2 ( x ) 是方程(6)的两个解,那么
y=C1y1(x)+C2y2(x)(7) (7) y = C 1 y 1 ( x ) + C 2 y 2 ( x )
也是(6)的解,其中 C1C2 C 1 、 C 2 是任意常数
2. 设 y1(x),y2(x),...,yn(x) y 1 ( x ) , y 2 ( x ) , . . . , y n ( x ) 为定义在区间 I I 上的n个函数,如果存在 n n 个不全为零的常数k1,k2,...,kn,使得当 xI x ∈ I 时有恒等式
k1y1+k2y2+...+knyn0 k 1 y 1 + k 2 y 2 + . . . + k n y n ≡ 0
成立,那么称这 n n 个函数在区间I上线性相关;否则称线性无关
3. 如果 y1(x) y 1 ( x ) y2(x) y 2 ( x ) 是方程(6)的两个线性无关的特解,那么
y=C1y1(x)+C2y2(x)C1C2 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) ( C 1 、 C 2 是 任 意 常 数 )
就是方程(6)的通解
4. 如果 y1(x),y2(x),...,yn(x) y 1 ( x ) , y 2 ( x ) , . . . , y n ( x ) n n 阶齐次线性方程
y(n)+a1(x)y(n1)+...+an1(x)y+an(x)y=0
n n 个线性无关的解,那么,此方程的通解为
y=C1y1(x)+C2y2(x)+...+Cnyn(x)
,其中 C1,C2,...,Cn C 1 , C 2 , . . . , C n 为任意常数
5. 设 y(x) y ∗ ( x ) 是二阶非齐次线性方程
y+P(x)y+Q(x)y=f(x)(5) (5) y ″ + P ( x ) y ′ + Q ( x ) y = f ( x )
的一个特解, Y(x) Y ( x ) 是与(5)对应的齐次方程(6)的通解,那么
y=Y(x)+y(x)(8) (8) y = Y ( x ) + y ∗ ( x )
是二阶非齐次线性微分方程(5)的通解
6. 设非齐次线性方程(5)的右端 f(x) f ( x ) 是两个函数之和,即
y+P(x)y+Q(x)y=f1(x)+f2(x)(9) (9) y ″ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) + f 2 ( x ) ,
y1(x) y 1 ∗ ( x ) y2(x) y 2 ∗ ( x ) 分别是方程
y+P(x)y+Q(x)y=f1(x) y ″ + P ( x ) y ′ + Q ( x ) y = f 1 ( x )
y+P(x)y+Q(x)y=f2(x) y ″ + P ( x ) y ′ + Q ( x ) y = f 2 ( x )
的特解,那么 y1(x)+y2(x) y 1 ∗ ( x ) + y 2 ∗ ( x ) 就是原方程的特解

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值