【三维点云】CC教程1(Context Capture)

talk is cheap ,show me the code


图像获取

重叠 overl

主题的每个部分都应该从至少三个不同的视角拍摄——但不是完全不同的视角。连续照片之间的重叠部分通常应该超过三分之二。同一部位物体的不同视点间距应小于15度。
ContextCapture对于非结构化的获取非常健壮

相机模式

ContextCapture支持广泛的相机:手机,紧凑型数码,单反,鱼眼,摄影测量,和多相机系统。它可以处理静止的照片或从数码摄像机中提取视频帧。它不支持线性推杆式摄像机。它不支持快速运动下的滚动快门相机。
虽然ContextCapture不需要最低的相机分辨率,相比一个低分辨率的相机,一个更高的分辨率的相机允许在一个给定的精度与较少的照片,从而更快地获得一个主题。
ContextCapture需要知道相机传感器的宽度。如果您的相机型号没有列在我们的数据库中,您将被要求输入这些信息。

Projected PixelSize投影像素大小

生成的3D模型的分辨率和精度直接关系到在物体上的投影像素大小。为了达到预期的投影像素大小,你必须采用合适的焦距和距离组合,如下公式定义:
投影像素尺寸×焦距×照片最大尺寸=传感器宽度×到被摄体的距离
[m / pixel] [mm] [pixel] [mm] [m]

焦距Focal Length

Using a fixed focal length throughout the acquisitionprocess is recommended. 采集过程中建议使用定焦。

输入数据文件格式

在这里插入图片描述

定位数据

ContextCapture的一个突破性功能是它能够处理没有定位数据的照片。在这种情况下,ContextCapture生成了一个具有任意位置、旋转和缩放的3D模型,并且有一个可信的向上矢量。然而,ContextCapture本身也支持多种类型的定位数据,包括gps标签,控制点,并可以通过位置/旋转导入或完整块导入导入任何其他定位数据。


原则 Principle

ContextCapture以一组静态主题的数码照片作为输入,从不同的角度拍摄。可以提供各种额外的输入数据:相机属性(焦距,传感器大小,主点,镜头失真),照片位置(GPS),照片旋转(INS),控制点,…
在不需要人工干预的情况下,根据输入数据的大小,在几分钟/几小时的计算时间内,ContextCapture输出一个高分辨率的纹理三角形网格。 textured triangular mesh

输出的3D网格构成了被输入照片充分覆盖的主体部分的精确视觉和几何近似。

原则1 需要合适实验对象

ContextCapture最适合几何复杂的纹理哑光表面,包括但不限于建筑,地形和植被。
ContextCapture用于静态主题。移动的物体(人,车辆,动物),如果不是主要的,可以在生成的3D模型中以偶尔的人工制品为代价来处理。在采集过程中,人类和动物应保持静止,或应使用多个同步相机拍摄。


构成

两个主要的ContextCapture模块是ContextCapture Master和ContextCapture Engine。它们遵循一种主工模式:

  • ContextCapture Master是ContextCapture的主模块。通过图形用户界面,它允许定义输入数据和处理设置,提交处理任务,监控这些任务的进度,可视化它们的结果,等等。主机不执行处理任务。相反,它将任务分解为基本作业,然后提交给作业队列。
  • ContextCapture Engine是ContextCapture的工作模块。它在计算机后台运行,无需用户交互。当Engine不繁忙时,它会根据任务的优先级和提交日期接受队列中的待处理作业,并执行它。一项工作通常包括处理航空三角测量或三维重建,使用各种计算密集型算法(关键点提取、自动连接点匹配、束调整、密集图像匹配、鲁棒三维重建、无缝纹理映射、纹理图谱打包、层次分析)、
  • 对于自动化需求,ContextCapture Master接口也可以通过调用Python API来替代。参见ContextCapture ContextCapture MasterKernel SDK。(看到这里是不是有点紧张和兴奋,这意味着我们可以python做一整套流程,比如点云处理后进行深度学习)

workflow

在这里插入图片描述

### 推荐的激光点建模软件 在激光点建模领域,有多种专业的软件可供选择。以下是几款常用的软件及其特点: #### 1. **Cyclone** Cyclone 是一款功能强大的点处理软件,广泛应用于建筑、工程和施工行业。它可以轻松打开并处理经过配准的点模型,并提供框选工具来减少数据量。通过 Cyclone 的操作界面,用户可以选择一个薄薄的点层作为后续测量和绘制的基础,从而有效降低计算资源的需求和节省时间[^1]。 #### 2. **CloudCompare** CloudCompare 是一款开源的点处理软件,支持复杂的点数据分析和编辑。它的主要优势在于能够高效地处理大规模点数据,并提供了丰富的插件扩展功能。对于需要进行点分割、过滤和清理的任务,CloudCompare 提供了许多实用的功能,帮助用户去除不必要的噪声点[^3]。 #### 3. **ReCap** Autodesk ReCap 是另一款流行的点处理软件,专注于将原始扫描数据转换为可用的三维模型。它支持多源数据集成,并具备自动分类和简化点的能力。此外,ReCap 还允许与其他 Autodesk 平台无缝协作,适合 BIM 和 CAD 工作流中的应用[^4]。 #### 4. **Geomagic Wrap** Geomagic Wrap 主要用于逆向工程和三维建模。这款软件可以将点数据转化为高质量的多边形网格模型,并进一步优化成适用于制造或设计的曲面模型。其独特的特征提取算法使得复杂形状的重建变得更加简单直观[^2]。 #### 5. **ContextCapture** Bentley ContextCapture 是一种摄影测量和点处理解决方案,擅长生成高精度的真实感三维模型。无论是从无人机还是地面激光扫描仪获得的数据,都可以被用来创建详细的环境表示。此工具特别适合于城市规划、基础设施管理和资产数字化等领域。 ```python # 示例代码展示如何加载点文件至 CloudCompare (伪代码) import cloudcompare as cc def load_point_cloud(file_path): point_cloud = cc.loadPointCloudFromFile(file_path) return point_cloud file_path = 'example.las' point_cloud_data = load_point_cloud(file_path) print(f"Point cloud loaded successfully from {file_path}") ``` ### 注意事项 每种软件都有自己的专长和局限性,在实际项目中需根据具体需求和技术条件做出合理的选择。例如,如果目标是对大型建筑物进行精确测绘,则可能更倾向于使用 Cyclone 或 ReCap;而当涉及艺术雕塑或其他自由形态物体时,Geomagic Wrap 可能会更加合适。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一位不愿透漏姓氏的许先森

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值