三维点云语义分割的一些方法与相关论文
首先我们介绍一下三维深度学习在三维点云中的应用这样一篇综述性《Deep Learning for 3D Point Clouds: A Survey.》的论文,很好的概括了目前三维点云的处理方法,这里我们选择摘取其中关于语义分割的部分见后面
由此摘选出一些比较好的论文来阅读
一些未来准备看的论文
- PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation point方法的开篇之作 pointnet
- PointNet plus plus : Deep Hierarchical Feature Learning on Point Sets in a Metric Space pointnet++ pointnet的改进
- RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) 大规模场景的语义分割
- Attention Is All You Need (A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”in NeurIPS, 2017.)注意力机制的开篇文章
Deep Learning for 3D Point Clouds: A Survey.
综述类文章,讲了讲deep learning 在3维点云中的应用 注 中国人写英语真的容易看懂!
3D数据的表达方式 depth images, point clouds, meshes, and
volumetric grids
datasets:ModelNet [6], ScanObjectNN [7], ShapeNet [8], PartNet [9],S3DIS [10], ScanNet [11], Semantic3D [12], ApolloCar3D[13], and the KITTI Vision Benchmark Suite
problems: 3D shape classification, 3D object detection and tracking, 3D point cloud segmentation,3D point cloud registration, 6-DOF pose estimation, and 3D reconstruction
针对毕设任务的三维点云分割如图
针对3D point cloud segmentation
datasets: 不同的传感器:Mobile Laser Scanners (MLS) [15], [34], [36], Aerial Laser Scanners (ALS) [33], [38], static Terrestrial Laser Scanners (TLS) [12], RGBD cameras [11] and other 3D scanners
数据集合集:
激光雷达
- SemanticKITTI J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “SemanticKITTI: A dataset for semantic scene
understanding of lidar sequences,” in ICCV, 2019 - A. Serna, B. Marcotegui, F. Goulette, and J.-E. Deschaud, “Parisrue-madame database: a 3D mobile laser scanner dataset for benchmarking urban detection, segmentation and classification
methods,” in ICRA, 2014. - X. Roynard, J.-E. Deschaud, and F. Goulette, “Paris-lille-3d: A
large and high-quality ground-truth urban point cloud dataset
for automatic segmentation and classification,” IJRR, 2018.
RGB-D
- A. Dai, A. X. Chang, M. Savva, M. H