数学----向量点积公式推导

向量的点积有两种形式的定义,代数定义和几何定义。

一  几何定义:

向量点积:a·b=|a||b|cosα

注意:该定义只对2维3维空间有效。

二 代数定义:

设二维空间内有两个向量  和  ,定义它们的数量积(又叫内积、点积)为以下实数:

更一般地,n维向量的内积定义如下: [1] 

三 定义间的推导

1 几何定义推导代数定义

2 代数定义推导几何定义


 

向量将代数与几何进行了统一。向量可以将代数问题转化为几何问题,几何问题转化为代数问题。

四 点积的用途:

向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物体离光照的轴线越近,光照越强。

参考资料:

             向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读(经典)

             数学----三角形余弦定理证明

             两点间距离公式

             点积

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:blogdevteam 返回首页

打赏作者

只布布倩

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值