
计算机视觉
文章平均质量分 91
由浅入深,介绍CV领域各个知名网络
曼城周杰伦
行走在路上的AI工程师
展开
-
计算机视觉: 基于隐式BRDF自编码器的文生三维技术
论文链接: MATLABER: Material-Aware Text-to-3D via LAtent BRDF auto-EncodeR得益扩散模型和大量的text - image 成对的图片, 现在文生2D的模型已经比较成熟的框架和模型,主流的技术比如说stable diffusion 和 midjourney 以及工业领域runway 等。当2D技术日渐成熟之后,开发者的眼光逐渐转向了文生3D的领域,开创性的工作由DreamFusion提出的Relying on promising Score Di原创 2023-10-07 11:35:35 · 966 阅读 · 0 评论 -
计算机视觉: 可控的高质量人体生成
作者提出COMODO自回归模型,它通过对可实时改变对基模型输入动作信号从而实现得到高质量的可控的动作,其输入的信号有三种模式分别是random sampling(生模模型随机采样无控制信号输入) / conditional inpainting(例如控制其动作的范围,只能在下图红线上做动作生成) / policy-based controlling (去改变一些点或者说是指定手或者脚的动作),最终实现整个流程。基于此,本篇论文也是基于自回归模型范式。原创 2023-09-30 08:00:00 · 451 阅读 · 1 评论 -
计算机视觉: 三维物体生成
论文地址: Controllable Mesh Generation Through Sparse Latent Point Diffusion Models数据是目前数字化和AI领域最宝贵的财富之一,但是对于目前的开发者来说,收集数据都意味着极大的成本。所以建立一个高效的生成模型能极大的提高开发者的效率降低生产成本。生成模型简单来说就是一个概率模型,其学习真实世界的数据分布从而去生成新的数据样本。其中目前主流的图像的生成模型包括stable difussion模型, 其原理主要可以分成两个过程而根据sta原创 2023-09-23 16:59:59 · 637 阅读 · 1 评论 -
点云Feature Description特征描述 - PFH & FPFH算法
通过特征提取算法找到特征点(代码里的特征点是直接由ISS算法提取到的2个点)计算特征点的radius近邻,然后计算所有点两两之间的6D pose(u , v , w , α , Φ , θ),下面是计算任意两点p1 & p2之间的6D pose算法 , 其中n1 和 n2 分别是 p1 和 p2点的法向量u = n1w = u X vd = $ ||p2 - p1||$ (受传感器远近影响,所以一般舍去)α = v · n2Φ = u ·p2−p1∣∣p2−p。原创 2023-05-10 00:55:30 · 597 阅读 · 0 评论 -
点云特征提取算法之ISS
ISS是直接针对于点云数据的特征提取方法,其思想的核心在于PCA分解之后,其最小的特征值必须要足够大。基于这个思想我们对算法进行介绍:对点云的每个点遍历,计算其RadiusNN每个点根据其RadiusNN表示,并由其R近邻点计算加权的协方差矩阵权重wj构建的思想基于: 稀疏部分的点云的权重大于密集部分的点云权重,所以定义如下对于任意一个近邻点j,其对应的矩阵与点j的R近邻的个数成反比2. 最终的加权协方差矩阵定义如下:对协方差矩阵进行特征值分解,分别计算λ1,λ2,λ3,降序排序。原创 2023-04-27 23:07:27 · 3864 阅读 · 2 评论 -
点云检测算法之PointNe++t深度解读
论文链接 : PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric SpaceGithub链接:有关于环境感知方面的网络介绍及代码链接有关于PointNet缺点,可以参考我上一篇文章ComputerVersion/PointNet.md at main · Victor94-king/ComputerVersion , 我觉得最主要的在于其利用了maxpooling 整合了全局的信息,但是没有利用邻域的信息,基于此,原创 2023-04-17 15:27:16 · 327 阅读 · 0 评论 -
点云检测算法之PointNet深度解读
论文链接 : PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation代码链接 : PointNet PytorchGithub链接:有关于环境感知方面的网络介绍及代码链接有关于点云的介绍可以参考3D点云基础知识, 总结的来说,点云数据的处理已经成为了3D视觉中必不可少的一部分。其数据相比于2D图像,本身有着先天不需要的特征变换的优势。点云数据有着以下的特点:所以,在初期对于点云数据的处理方式主要有下面三种:我个原创 2023-04-15 00:09:22 · 579 阅读 · 0 评论 -
检测算法之R-CNN系列深度解读
CSDN:RCNN系列是物体检测系列的开山之作,本篇文章会主要的介绍下这个系列的特点以及其进化历史,下图是RCNN系列的发展,原创 2023-04-08 01:25:11 · 352 阅读 · 0 评论 -
点云处理之模型拟合
课程地址: 三维点云处理 - 深蓝学院 - 专注人工智能与自动驾驶的学习平台 (shenlanxueyuan.com)可以参考我之前的链接: 机器学习之回归分析_victor_manches的博客-CSDN博客, 简单的来说就是找到一条令所有点到这条直线的距离和最短。优点: 简单,快速缺点: 对噪声不鲁棒,残差的方向的效果一致解决方法:(使用Huber Loss / Focal Loss / Cauchy Loss)2. RANSAC基本原理对于三维点云数据,我们更加优选与RANSAC算法流程原创 2023-04-07 17:31:14 · 483 阅读 · 0 评论 -
3D双目感知深度估计之PSMNet解读
论文地址: [1803.08669] Pyramid Stereo Matching Network (arxiv.org)代码地址: JiaRenChang/PSMNet: Pyramid Stereo Matching Network (CVPR2018) (github.com)3D感知任务相比于2D感知任务的情况更为复杂,而相比于单目相机双目相机的感知能力拥有以下几个特点:而双目相机是如何实现3D视觉感知的呢?如下图:B : 两个相机之间的距离f : 相机的焦距d: 视差(左右两张图象上同一个3d原创 2023-04-02 12:14:45 · 2195 阅读 · 0 评论 -
点云检测算法之PointPillar深度解读
介绍损失函数前这里介绍下PP的Anchor的设计,由于PP是基于点云数据的俯视图的表示,所以这里初始化的矛框有着不同于图像的矛框的设计,不同于图像的远小近大的特点,点云数据拥有者几何不变性的特点,所以在这里我们可以直接利用不同类别的先验知识来初始化矛框,下面是车辆和行人的矛框的初始化。PS:虽然矛框是3D的,但是再与GT匹配的时候,只采用2D的信息。现在在目标检测的领域的基本上是标配,主要解决的问题就是多尺度变换的不足,高层的特征虽然包含了丰富的语义信息,但是由于低分辨率,很难准确地保存物体的位置信息。原创 2023-04-01 00:43:43 · 4996 阅读 · 0 评论 -
语义分割之RandLANet深度解读
语义分割任务是计算机视觉里的一个比较基础的任务,其相比于物体检测任务主要有以下几个优点:输出的结果是稠密的,是针对于所有像素点的K分类问题,物体检测任务只输出前景类物体的信息忽略了背景点的信息在自动驾驶任务中可以实现可行驶区域的识别,大部分区域都是以背景的形式存在,而这些背景同样是非行驶区域可以输出非常精细的结果,物体检测由于输出都是刚性的矛框,对于一些精细的任务无法达到要求语义分割 : 对图片的每个像素点进行分类eg: 人 、车辆 、道路 、建筑物等。原创 2023-04-01 18:09:58 · 4401 阅读 · 2 评论