本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
上一章介绍了Prompt 工程的方法,但是实际过程中是否可以自动化的去优化prompt
在当前 AI 开发中,提示词工程常常面临优化耗时、效果不稳定等挑战。LangChain 近日推出自家的自动提示词优化工具Promptim [1] ,为开发者提供了一套系统化改进 AI 提示词的解决方案。这款工具能够自动优化特定任务的提示词,显著提升开发效率。
Promptim 的设计理念是让开发者只需准备初始提示词、数据集和评估标准,系统便会自动运行优化循环,生成更优质的提示词。该工具与 LangSmith 平台无缝对接,可实现数据集管理、提示词管理、结果追踪等功能。
Promptim 有三大核心优势:
- 大幅节省调试时间,告别繁琐的手动优化
- 引入科学方法论(借鉴 DSPy),使提示词工程更加规范
- 轻松实现跨模型迁移,降低模型切换成本
工具的运行机制包含五个关键步骤:从指定数据集和评估标准,到获取基准分数,再到循环评估优化,最后在测试集验证并可选择引入人工反馈。这一流程既保证了优化的科学性,又兼顾了实用性。
官方介绍,他们的工具与 DSPy 相比,有以下不同:
- 专注于单个提示词的优化,而 DSPy 致力于优化整个"复合 AI 系统"
- 更强调保持人在循环中的作用,包括支持人工反馈环节,而 DSPy 相对更加自动化
- 专注于提示词重写,而 DSPy 提供更广泛的优化方案,如微调和少样本提示等
虽然 Promptim 能够自动完成大部分优化工作,但开发团队建议在关键节点保留人工审核,以确保优化结果符合预期。
官方同时表示,接下来将着力开发动态少样本提示等新功能,并计划与 LangSmith 实现更深度的整合,进一步提升工具的实用价值。
快速入门Promptim 是一个实验性的提示优化库,用于帮助您系统地改进 AI 系统。
Promptim 自动化了对特定任务提示词进行改进的过程。您提供初始提示词、数据集、自定义评估器(和可选的人类反馈),promptim
运行一个优化循环,生成一个旨在优于原始提示词的精炼提示。
有关设置和使用的详细信息,请参见下面的快速入门指南。
以下是文件的前几段内容翻译成中文的示例。为了完整翻译整个文件,我将逐步翻译并保持原有的markdown格式。
# Promptim
Promptim 是一个实验性的**提示**优**化**库,用于帮助您系统地改进 AI 系统。
Promptim 自动化了对特定任务提示词进行改进的过程。您提供初始提示词、数据集、自定义评估器(和可选的人类反馈),`promptim` 运行一个优化循环,生成一个旨在优于原始提示词的精炼提示。
有关设置和使用的详细信息,请参见下面的快速入门指南。

## 快速入门
让我们尝试在简单的推文生成任务上进行提示优化。
### 1. 安装
首先安装 CLI。
```shell
pip install -U promptim
并确保您的环境中有有效的 LangSmith API 密钥。对于快速入门任务,我们将使用 Anthropic 的 Claude 模型作为优化器和目标系统。
LANGSMITH_API_KEY=CHANGEME
ANTHROPIC_API_KEY=CHANGEME
2. 创建任务
接下来,创建一个任务进行优化。
这是初步翻译的内容,如果确认无误,我会继续翻译后续部分。
3. 定义数据集和提示词
创建一个数据集并定义初始提示词。在这个例子中,我们的目标是生成有吸引力的推文。
dataset = [
{"topic": "人工智能", "example_tweet": "人工智能正改变我们的世界!#未来"},
{"topic": "气候变化", "example_tweet": "气候变化是真实存在的,现在行动刻不容缓!#环保"},
{"topic": "区块链", "example_tweet": "区块链技术为金融带来革命性改变。#金融科技"}
]
initial_prompt = "生成一条有吸引力的推文,主题是{topic}。"
4. 设置评估器
创建一个自定义的评估器来测量推文的质量。此评估器会根据示例推文的相似性评分生成的推文。
def evaluate(generated_tweet, example_tweet):
# 简单的相似度评分(可以替换为更复杂的评估逻辑)
return generated_tweet in example_tweet
5. 优化提示词
使用 Promptim 优化您的提示词。
from promptim import Optimizer
optimizer = Optimizer(
model="claude", # 使用的模型
initial_prompt=initial_prompt,
dataset=dataset,
evaluate_fn=evaluate
)
optimized_prompt = optimizer.optimize()
print("优化后的提示词:", optimized_prompt)
6. 验证结果
运行优化后,您可以使用优化后的提示词并评估其效果。
Promptim 支持多种配置选项,您可以根据需求进行调整:
- 模型选择:选择适合您任务的模型,例如
claude
或gpt-4
。 - 数据集大小:根据任务的复杂性调整数据集大小。
- 优化迭代:控制优化循环的迭代次数。
相关阅读:
Langchain 创始人新项目 Auto-Prompt Builder 一键优化你的 Prompt,再也不担心写不好 Prompt 了
Weavel Ape 超过 DSPy,或将成为最好用的提示(prompt)优化工具
DSPy(声明式自改进语言程序),面向大模型编程的新方法,克服当前 LLM 应用开发的诸多缺点
伯克利:即使模型再强大,复合 AI 系统( Compound AI Systems)都将会是一种领先的应用模式
参考资料
[1]Promptim: https://github.com/hinthornw/promptimizer