
机器学习
文章平均质量分 75
曼城周杰伦
行走在路上的AI工程师
展开
-
Pandas 10 大数据清洗技巧!
缺失数据在数据分析中很常见。重复数据可能影响分析结果。确保数据类型正确很重要。处理多个数据源时常用。提供强大的处理功能。异常值可能影响分析结果。数据分析的强大工具。原创 2025-01-22 16:00:00 · 318 阅读 · 0 评论 -
Pandas 常用的 35 个经典操作
pivot_table = pd.pivot_table(df, values=‘年龄’, index=‘名字’, columns=‘性别’, aggfunc=‘mean’)data2 = {‘名字’: [‘孙悟空’, ‘猪八戒’], ‘年龄’: [500, 400], ‘性别’: [‘男’, ‘男’]}df3 = pd.DataFrame({‘名字’: [‘白龙马’], ‘年龄’: [300], ‘性别’: [‘男’]})df[‘姓名’] = [‘张三丰’, ‘李四光’, ‘王五岳’, ‘赵六令’]原创 2025-01-22 10:00:00 · 1037 阅读 · 0 评论 -
机器学习: 阿里巴巴发布基于:蒙特卡洛的应用Marco-o1
阿里巴巴发布了Marco-o1!!!Marco-o1通过集成。原创 2024-11-24 16:30:51 · 922 阅读 · 0 评论 -
表格不同类型的数据如何向量化?
向量化通常指的是将表格中的不同类型的数据(如数值、分类、文本等)转换为向量形式的过程。向量化是机器学习模型应用的前提步骤,它确保了模型能够处理不同类型的特征数据,并且在训练和预测中提高模型的性能和准确性。通过对数值、类别、文本等特征进行合适的向量化处理,可以有效地提升模型的效果。原创 2024-11-20 16:00:00 · 1988 阅读 · 0 评论 -
NLP面试官:“Attention为什么要除以根号d” 算法女生这么回答当场想发 offer
作者说,当 的值变大的时候,softmax 函数会造成梯度消失问题,所以设置了一个 softmax 的 temperature 来缓解这个问题。这个题目可以说是 NLP 面试中一个高频出现的问题,基本上问到 Attention 或者 Transformers 的时候都会问。这个问题在《Attention is All Your Need》的原始论文中是给出了一个粗略的答案的。这是个好题目,我作为面试官的时候也经常问,因为很快能了解到面试同学的数学功底怎么样。下面来回答一下这两个衍生的问题。原创 2024-06-01 18:19:56 · 535 阅读 · 0 评论 -
对抗训练:提高机器学习模型鲁棒性的关键技术
对抗训练是一种强大的工具,可以帮助我们构建更加安全可靠的人工智能系统。随着对抗样本攻击手段的不断进步,对抗训练技术也在不断发展,以应对新的挑战。原创 2024-05-20 15:25:39 · 2573 阅读 · 0 评论 -
最全总结!十大SVM算法模型!
支持向量机(SVM)能够处理高维数据、非线性可分问题,并且具有良好的泛化能力,被广泛应用于分类、回归和异常检测等领域。每一种模型和变体在不同的问题和数据集上表现出不同的性能和特点,在实际情况中,合适的模型取决于具体的应用场景和数据特征。SVM通过找到最优超平面来划分不同类别的数据,从而实现对数据的有效分类和预测。今天咱们从以下10个方面出发,详细介绍其每种算法模型的核心要点和使用方法。先来简单介绍下支持向量机~原创 2024-05-20 08:38:38 · 326 阅读 · 0 评论 -
Seaborn用法大全
Seaborn是一个基于Python的数据可视化库,它建立在matplotlib的基础之上,为统计数据的可视化提供了高级接口。Seaborn通过简洁美观的默认样式和绘图类型,使数据可视化变得更加简单和直观。它特别适用于那些想要创建具有吸引力且信息丰富的统计图形的数据科学家和数据分析师。原创 2024-05-13 08:51:19 · 1210 阅读 · 0 评论 -
机器学习之SMOTE重采样--解决样本标签不均匀问题
使用SMOTE算法对其中的少数类别进行过采样,以使其与多数类别的样本数量相当或更接近。这个示例中,首先生成一个不平衡的二分类数据集,然后使用SMOTE算法来生成新的合成样本,使得两个类别的样本数量相等。最后原始数据集和平衡后的数据集进行可视化展示。包含了各种常用的不平衡数据处理方法,例如:随机过采样,SMOTE及其变形方法,tom-links欠采样,编辑最近邻欠采样方法等等。仅用正样本的K近邻生成新正样本是正是SMOTE方法,考虑到(SMOTE的最终目的是分清正负样本的边界),所以需要对样本生成进行优化。原创 2024-05-06 17:36:49 · 1200 阅读 · 0 评论 -
机器学习之常用的回归预测模型
本文全面整理了各种回归预测模型,旨在帮助读者更好地学习回归预测模型原创 2024-04-04 14:52:46 · 2861 阅读 · 0 评论 -
时间系列预测总结
转载自:https://mp.weixin.qq.com/s/B1eh4IcHTnEdv2y0l4MCog拥有一种可靠的方法来预测和预测未来事件一直是人类的愿望。在数字时代,我们拥有丰富的信息,尤其是时间序列数据。时间序列是指基于时间刻度维度(天、月、年等)采样和组织的任何数据。预测它将提供有价值的见解,帮助我们做出明智的决策并制定业务战略。时序数据示例包括:金融市场:股票价格、汇率和交易量。气候和天气:温度、降雨量和风速。销售和需求预测:一段时间内的产品销售数据。原创 2024-04-08 13:39:35 · 805 阅读 · 0 评论