基于鱼群算法的函数寻优

本文详细介绍了使用Matlab实现鱼群算法解决函数最优化问题的过程。实验通过模拟觅食、聚群和追尾等鱼类行为,寻找给定函数maxf(x)=xsin(10πx)+2在-1≤x≤2区间内的最大值。通过不断迭代,最终找到最优解,展示了鱼群算法在优化问题中的应用。
摘要由CSDN通过智能技术生成
1.实验目的
掌握鱼群算法求函数极值的问题。
2.实验环境
Matlab
3.实验内容
对给定函数max f(x)=xsin(10πx)+2.0  -1≤x≤2,求使得函数值最大的变量取值。
4.实验过程 
觅食行为:这是生物的一种最基本的行为,也就是趋向食物的一种活动;一般可以认为这种行为是通过视觉或味觉感知水中的食物量或浓度来选择趋向的。
function [Xnext,Ynext]=AF_prey(Xi,ii,visual,step,try_number,LBUB,lastY)
%觅食行为
%输入:
%Xi          当前人工鱼的位置
%ii          当前人工鱼的序号
%visual      感知范围
%step        最大移动步长
%try_number  最大尝试次数
%LBUB        各个数的上下限
%lastY       上次的各人工鱼位置的食物浓度
 
%输出:
%Xnext       Xi人工鱼的下一个位置  
%Ynext       Xi人工鱼的下一个位置的食物浓度
 
Xnext=[];
Yi=lastY(ii);
for i=1:try_number
    Xj=Xi+(2*rand(length(Xi),1)-1)*visual;
    Yj=AF_foodconsistence(Xj);
    if Yi<Yj
        Xnext=Xi+rand*step*(Xj-Xi)/norm(Xj-Xi);
        for i=1:length(Xnext)
            if  Xnext(i)>LBUB(i,2)
                Xnext(i)=LBUB(i,2);
            end
            if  Xnext(i)<LBUB(i,1)
                Xnext(i)=LBUB(i,1);
            end
        end
        Xi=Xnext;
        break;
    end
end
 
%随机行为
if isempty(Xnext)
    Xj=Xi+(2*rand(length(Xi),1)-1)*visual;
    Xnext=Xj;
    for i=1:length(Xnext)
        if  Xnext(i)>LBUB(i,2)
            Xnext(i)=LBUB(i,2);
        end
        if  Xnext(i)<LBUB(i,1)
            Xnext(i)=LBUB(i,1);
        end
    end
end
Ynext=AF_foodconsistence(Xnext);
.
聚群行为:这是鱼类较常见的一种现象,大量或少量的鱼都能聚集成群,这是它们在进化过程中形成的一-种生存方式,可以进行集体觅食和躲避敌害。
function [Xnext,Ynext]=AF_swarm(X,i,visual,step,deta,try_number,LBUB,lastY)
% 聚群行为
%输入:
%X           所有人工鱼的位置
%i           当前人工鱼的序号
%visual      感知范围
%step        最大移动步长
%deta        拥挤度
%try_number  最大尝试次数
%LBUB        各个数的上下限
%lastY       上次的各人工鱼位置的食物浓度
 
%输出:
%Xnext       Xi人工鱼的下一个位置  
%Ynext       Xi人工鱼的下一个位置的食物浓度
Xi=X(:,i);
D=AF_dist(Xi,X);
index=find(D>0 & D<visual);
nf=length(index);
if nf>0
    for j=1:size(X,1)
        Xc(j,1)=mean(X(j,index));
    end
    Yc=AF_foodconsistence(Xc);
    Yi=lastY(i);
    if Yc/nf>deta*Yi
        Xnext=Xi+rand*step*(Xc-Xi)/norm(Xc-Xi);
        for i=1:length(Xnext)
            if  Xnext(i)>LBUB(i,2)
                Xnext(i)=LBUB(i,2);
            end
            if  Xnext(i)<LBUB(i,1)
                Xnext(i)=LBUB(i,1);
            end
        end
        Ynext=AF_foodconsistence(Xnext);
    else
        [Xnext,Ynext]=AF_prey(Xi,i,visual,step,try_number,LBUB,lastY);
    end
else
    [Xnext,Ynext]=AF_prey(Xi,i,visual,step,try_number,LBUB,lastY);
end
追尾行为:当某一条鱼或几条鱼发现食物时,它们附近的鱼会尾随其后快速游过来,进而导致更远处的鱼也尾随过来。
function [Xnext,Ynext]=AF_follow(X,i,visual,step,deta,try_number,LBUB,lastY)
% 追尾行为
%输入:
%X           所有人工鱼的位置
%i           当前人工鱼的序号
%visual      感知范围
%step        最大移动步长
%deta        拥挤度
%try_number  最大尝试次数
%LBUB        各个数的上下限
%lastY       上次的各人工鱼位置的食物浓度
 
%输出:
%Xnext       Xi人工鱼的下一个位置
%Ynext       Xi人工鱼的下一个位置的食物浓度
Xi=X(:,i);
D=AF_dist(Xi,X);
index=find(D>0 & D<visual);
nf=length(index);
if nf>0
    XX=X(:,index);
    YY=lastY(index);
    [Ymax,Max_index]=max(YY);
    Xmax=XX(:,Max_index);
    Yi=lastY(i);
    if Ymax/nf>deta*Yi;
        Xnext=Xi+rand*step*(Xmax-Xi)/norm(Xmax-Xi);
        for i=1:length(Xnext)
            if  Xnext(i)>LBUB(i,2)
                Xnext(i)=LBUB(i,2);
            end
            if  Xnext(i)<LBUB(i,1)
                Xnext(i)=LBUB(i,1);
            end
        end
        Ynext=AF_foodconsistence(Xnext);
    else
        [Xnext,Ynext]=AF_prey(X(:,i),i,visual,step,try_number,LBUB,lastY);
    end
else
    [Xnext,Ynext]=AF_prey(X(:,i),i,visual,step,try_number,LBUB,lastY);
end
.
随机行为:鱼在水中悠闲地自由游动,基本上是随机的,其实它们也是为了更大范围地寻觅食物或同伴。
if isempty(Xnext)
    Xj=Xi+(2*rand(length(Xi),1)-1)*visual;
    Xnext=Xj;
    for i=1:length(Xnext)
        if  Xnext(i)>LBUB(i,2)
            Xnext(i)=LBUB(i,2);
        end
        if  Xnext(i)<LBUB(i,1)
            Xnext(i)=LBUB(i,1);
        end
    end
End

AF_foodconsistence.m
function [Y]=AF_foodconsistence(X)
fishnum=size(X,2);
for i=1:fishnum
     Y(1,i)=X(i)*sin(10*pi*X(i))+2;
end

计算距离:
AF_dist.m
function D=AF_dist(Xi,X)
%计算第i条鱼与所有鱼的位置,包括本身。
%输入:
%Xi   第i条鱼的当前位置  
%X    所有鱼的当前位置
% 输出:
%D    第i条鱼与所有鱼的距离
col=size(X,2);
D=zeros(1,col);
for j=1:col
    D(j)=norm(Xi-X(:,j));
end
dist.m
%计算第i条鱼与所有鱼的位置,包括本身。
function D=dist(Xi,X)
col=size(X,2);
D=zeros(1,col);
for j=1:col
    D(j)=norm(Xi-X(:,j));
end
鱼群初始化:AF_init.m
function X=AF_init(Nfish,lb_ub)
%输入:
% Nfish 鱼群大小
% lb_ub 鱼的活动范围
 
%输出:
% X     产生的初始人工鱼群
 
% example:
% Nfish=3;
% lb_ub=[-3.0,12.1,1;4.1,5.8,1]; 
%%这里的lb_ub是2行3列的矩阵,每行中前两个数是范围的上下限,第3个数是在该范围内的数的个数
% X=Inital(Nfish,lb_ub)  
%%就是产生[-3.0,12.1]内的数1个,[4.1,5.8]内的数1个
%%两个数一组,这样的数一共Nfish个
row=size(lb_ub,1);
X=[];
for i=1:row
    lb=lb_ub(i,1);
    ub=lb_ub(i,2);
    nr=lb_ub(i,3);
    for j=1:nr
        X(end+1,:)=lb+(ub-lb)*rand(1,Nfish);
    end
end

主函数:main.m
clc
clear all
close all
tic
figure(1);hold on
ezplot('x*sin(10*pi*x)+2',[-1,2]);
%% 参数设置
fishnum=50; %生成50只人工鱼
MAXGEN=50; %最多迭代次数
try_number=100;%最多试探次数
visual=1; %感知距离
delta=0.618; %拥挤度因子
step=0.1; %步长
%% 初始化鱼群
lb_ub=[-1,2,1];
X=AF_init(fishnum,lb_ub);
LBUB=[];
for i=1:size(lb_ub,1)
    LBUB=[LBUB;repmat(lb_ub(i,1:2),lb_ub(i,3),1)];
end
gen=1;
BestY=-1*ones(1,MAXGEN); %每步中最优的函数值
BestX=-1*ones(1,MAXGEN); %每步中最优的自变量
besty=-100; %最优函数值
Y=AF_foodconsistence(X);
while gen<=MAXGEN
    fprintf(1,'%d\n',gen)
    for i=1:fishnum
          %% 聚群行为
        [Xi1,Yi1]=AF_swarm(X,i,visual,step,delta,try_number,LBUB,Y); 
         %% 追尾行为
        [Xi2,Yi2]=AF_follow(X,i,visual,step,delta,try_number,LBUB,Y); 
        if Yi1>Yi2
            X(:,i)=Xi1;
            Y(1,i)=Yi1;
        else
            X(:,i)=Xi2;
            Y(1,i)=Yi2;
        end
    end
    [Ymax,index]=max(Y);
    figure(1);
    plot(X(1,index),Ymax,'.','color',[gen/MAXGEN,0,0])
    if Ymax>besty
        besty=Ymax;
        bestx=X(:,index);
        BestY(gen)=Ymax;
        [BestX(:,gen)]=X(:,index);
    else
        BestY(gen)=BestY(gen-1);
        [BestX(:,gen)]=BestX(:,gen-1);
    end
    gen=gen+1;
end
plot(bestx(1),besty,'ro','MarkerSize',100)
xlabel('x')
ylabel('y')
title('鱼群算法迭代过程中最优坐标移动')
 
%% 优化过程图
figure
plot(1:MAXGEN,BestY)
xlabel('迭代次数')
ylabel('优化值')
title('鱼群算法迭代过程')
disp(['最优解X:',num2str(bestx,'%1.4f')])
disp(['最优解Y:',num2str(besty,'%1.4f')])
toc

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值