台大机器学习 第八讲 Noise and Error 笔记

本文探讨了在算法中引入错误权值的概念及其衡量方法,包括直接提供正确答案(ture)、说服自己接近预期(plausible)及易于算法优化(friendly)。通过不同权值的考量,算法能在复杂情况下做出更合理的更新。
摘要由CSDN通过智能技术生成

                                               g

                                 +1                     -1                      

                   +1      no error                 M

          f

                   -1           N                   no error

其中N和M是对错误的判断的权值,根据他错误的严重性决定这个值得大小

 

错误权值的衡量方法:

1.ture     直接被提供正确的

2.plausible    说服自己,自己看来和预期结果差不多

3.friendly     easy to optimize for A(演算法)

 

 

演算法要考虑权值进行计算,不再是同等情况下进行更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值