线性代数 (三): SVD数学证明与理解

本文详细探讨了实矩阵的奇异值分解(SVD),通过证明ATA为半正定矩阵,阐述了SVD的数学原理。SVD将矩阵分解为UΣVT,其中U和V由标准正交基组成,Σ是对角矩阵。SVD的意义在于对任意矩阵进行特征值分解,实现数据的有损压缩,并在PCA等场景中加速特征值计算。
摘要由CSDN通过智能技术生成

SVD 数学证明与理解

命题

只讨论实矩阵.

任意矩阵 A m , n A_{m,n} Am,n 可以分解为:

A m , n = U Σ V T A_{m,n} = U\Sigma V^T Am,n=UΣVT

其中 U m , m U_{m,m} Um,m V n , n V_{n, n} Vn,n 为由 R m \R^m Rm R n \R^n Rn 下的标准正交基组成, Σ \Sigma Σ 为对角矩阵

证明

A T A A^TA ATA 为半正定矩阵 (证明见上篇博客), 所以特征值都为非负数, 记其特征值为 σ ( A T A ) = { σ 1 2 . . . σ n 2 } \sigma (A^TA) = \{\sigma_1^2...\sigma_n^2\} σ(ATA)={ σ12...σn2}, 并按照从大到小顺序排列

A T A A^T A ATA 的秩为 r r r, 则 σ 1 ≥ . . . ≥ σ r ≥ 0 = σ r + 1 = . . . = σ n \sigma_1 \ge ... \ge \sigma_r \ge 0 = \sigma_{r+1} = ... = \sigma_n σ1...σr0=σr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值