[转]一文解释PyTorch求导相关 (backward, autograd.grad)

PyTorch是动态图,即计算图的搭建和运算是同时的,随时可以输出结果;而TensorFlow是静态图。

在pytorch的计算图里只有两种元素:数据(tensor)和 运算(operation)

运算包括了:加减乘除、开方、幂指对、三角函数等可求导运算

数据可分为:叶子节点(leaf node)和非叶子节点;叶子节点是用户创建的节点,不依赖其它节点;它们表现出来的区别在于反向传播结束之后,非叶子节点的梯度会被释放掉,只保留叶子节点的梯度,这样就节省了内存。如果想要保留非叶子节点的梯度,可以使用retain_grad()方法。

torch.tensor 具有如下属性:

  • 查看 是否可以求导 requires_grad
  • 查看 运算名称 grad_fn
  • 查看 是否为叶子节点 is_leaf
  • 查看 导数值 grad

针对requires_grad属性,自己定义的叶子节点默认为False,而非叶子节点默认为True,神经网络中的权重默认为True。判断哪些节点是True/False的一个原则就是从你需要求导的叶子节点到loss节点之间是一条可求导的通路。

当我们想要对某个Tensor变量求梯度时,需要先指定requires_grad属性为True,指定方式主要有两种:

x = torch.tensor(1.).requires_grad_() # 第一种

x = torch.tensor(1., requires_grad=True) # 第二种

PyTorch提供两种求梯度的方法:backward() and torch.autograd.grad() ,他们的区别在于前者是给叶子节点填充.grad字段,而后者是直接返回梯度给你,我会在后面举例说明。还需要知道y.backward()其实等同于torch.autograd.backward(y)

一个简单的求导例子是: y = ( x + 1 ) ∗ ( x + 2 ) y=(x+1)*(x+2) y=(x+1)(x+2),计算 ∂ y / ∂ x \partial y /\partial x y/x ,假设给定 x = 2 x=2 x=2, 先画出计算图:
在这里插入图片描述
手算的话,
∂ y ∂ x = ∂ y ∂ a ∂ a ∂ x + ∂ y ∂ b ∂ b ∂ x = x + 2 + x + 1 = 7 \frac{\partial y}{\partial x}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial x} + \frac{\partial y}{\partial b}\frac{\partial b}{\partial x} = x+2+x+1=7 xy=ayxa+byxb=x+2+x+1=7

使用backward()

x = torch.tensor(2., requires_grad=True)

a = torch.add(x, 1)
b = torch.add(x, 2)
y = torch.mul(a, b)

y.backward()
print(x.grad)
>>>tensor(7.)

看一下这几个tensor的属性:

print("requires_grad: ", x.requires_grad, a.requires_grad, b.requires_grad, y.requires_grad)
print("is_leaf: ", x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)
print("grad: ", x.grad, a.grad, b.grad, y.grad)

>>>requires_grad:  True True True True
>>>is_leaf:  True False False False
>>>grad:  tensor(7.) None None None

使用backward()函数反向传播计算tensor的梯度时,并不计算所有tensor的梯度,而是只计算满足这几个条件的tensor的梯度:

  1. 类型为叶子节点、
  2. requires_grad=True
  3. 依赖该tensor的所有tensor的requires_grad=True。

所有满足条件的变量梯度会自动保存到对应的grad属性里。

使用autograd.grad()

x = torch.tensor(2., requires_grad=True)

a = torch.add(x, 1)
b = torch.add(x, 2)
y = torch.mul(a, b)

grad = torch.autograd.grad(outputs=y, inputs=x)
print(grad[0])
>>>tensor(7.)

因为指定了输出y,输入x,所以返回值就是 ∂ y / ∂ x \partial y/\partial x y/x这一梯度,完整的返回值其实是一个元组,保留第一个元素就行,后面元素是?

再举一个复杂一点且高阶求导的例子: z = x 2 y z=x^2y z=x2y,计算 ∂ z / ∂ x , ∂ z / ∂ y , ∂ 2 z / ∂ x 2 \partial z/\partial x,\partial z/\partial y,\partial^2z/\partial x^2 z/x,z/y,2z/x2 ,假设给定 x = 2 , y = 3 x=2, y=3 x=2,y=3

手算的话:
∂ z ∂ x = 2 x y → 12 , ∂ z ∂ y = x 2 → 4 , ∂ 2 z ∂ x 2 = 2 y → 6 \frac{\partial z}{\partial x}=2xy \to12,\frac{\partial z}{\partial y}=x^2 \to 4,\frac{\partial^2z}{\partial x^2}=2y \to 6 xz=2xy12,yz=x24,x22z=2y6
求一阶导可以用backward().

x = torch.tensor(2., requires_grad=True)
y = torch.tensor(3., requires_grad=True)

z = x * x * y

z.backward()
print(x.grad, y.grad)
>>>tensor(12.) tensor(4.)

也可以用autograd.grad()

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad_x = torch.autograd.grad(outputs=z, inputs=x)
print(grad_x[0])
# grad_y = torch.autograd.grad(outputs=z, inputs=y) 无法对y进行求导了
>>>tensor(12.)

为什么不在这里面同时也求对y的导数呢?因为无论是backward还是autograd.grad在计算一次梯度后图就被释放了,如果想要保留,需要添加retain_graph=True

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad_x = torch.autograd.grad(outputs=z, inputs=x, retain_graph=True)
grad_y = torch.autograd.grad(outputs=z, inputs=y)

print(grad_x[0], grad_y[0])
>>>tensor(12.) tensor(4.) 

再来看如何求高阶导,理论上其实是上面的grad_x再对x求梯度,试一下看:

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad_x = torch.autograd.grad(outputs=z, inputs=x, retain_graph=True)
grad_xx = torch.autograd.grad(outputs=grad_x, inputs=x)

print(grad_xx[0])
>>>RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

报错了,虽然retain_graph=True保留了计算图和中间变量梯度, 但没有保存grad_x的运算方式,需要使用creat_graph=True在保留原图的基础上再建立额外的求导计算图,也就是会把 ∂ z / ∂ x = 2 x y \partial z/\partial x=2xy z/x=2xy这样的运算存下来。

grad_xx这里也可以直接用backward(),相当于直接从 ∂ z / ∂ x = 2 x y \partial z/\partial x=2xy z/x=2xy开始回传:

# autograd.grad() + backward()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad = torch.autograd.grad(outputs=z, inputs=x, create_graph=True)
grad[0].backward()

print(x.grad)
>>>tensor(6.)

也可以先用backward()然后对x.grad这个一阶导继续求导:

# backward() + autograd.grad()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

z.backward(create_graph=True)
grad_xx = torch.autograd.grad(outputs=x.grad, inputs=x)

print(grad_xx[0])
>>>tensor(6.)

那是不是也可以直接用两次backward()呢?第二次直接x.grad从开始回传,我们试一下:

# backward() + backward()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

z.backward(create_graph=True) # x.grad = 12
x.grad.backward()

print(x.grad)
>>>tensor(18., grad_fn=<CopyBackwards>)

发现了问题,结果不是6,而是18,发现第一次回传时输出x梯度是12。这是因为PyTorch使用backward()时默认会累加梯度,也就是12+6=18,需要手动把前一次的梯度清零:

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

z.backward(create_graph=True)
x.grad.data.zero_()
x.grad.backward()

print(x.grad)
>>>tensor(6., grad_fn=<CopyBackwards>)

有没有发现前面都是对标量求导,如果不是标量会怎么样呢?

x = torch.tensor([1.,2.]).requires_grad_()
y=x+1
y.backward()
print(x.grad)
>>>RuntimeError: grad can be implicitly created only for scalar outputs

报错了,因为只能标量对标量,标量对向量求梯度, x x x可以是标量或者向量,但 y y y只能是标量;所以只需要先将$$y转变为标量,对分别求导没影响的就是求和。

此时,
x = [ x 1 , x 2 ] , y = [ x 1 2 , x 2 2 ] , y ′ = y . s u m ( ) = x 1 2 + x 2 2 , ∂ y ′ ∂ x 1 = 2 x 1 → 2 , ∂ y ′ ∂ x 2 = 2 x 2 → 4 x=[x_1,x_2],y=[x_1^2, x_2^2],y\prime=y.sum()=x_1^2+x_2^2, \\ \frac{\partial y\prime}{\partial x_1}=2x_1 \to 2,\frac{\partial y\prime}{\partial x_2}=2x_2 \to 4 x=[x1,x2]y=[x12,x22]y=y.sum()=x12+x22,x1y=2x12x2y=2x24

x = torch.tensor([1., 2.]).requires_grad_()
y = x * x

y.sum().backward()
print(x.grad)
>>>tensor([2., 4.])

再具体一点来解释,让我们写出求导计算的雅可比矩阵, y = [ y 1 , y 2 ] \boldsymbol y=[y_1,y_2] y=[y1,y2]是一个向量,
J = [ ∂ y ∂ x 1 , ∂ y ∂ x 2 ] = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 ] \boldsymbol J=[\frac{\partial \boldsymbol y}{\partial x_1},\frac{\partial \boldsymbol y}{\partial x_2}]=\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix} J=[x1y,x2y]=[x1y1x1y2x2y1x2y2]
而我们希望最终的求导结果是 [ ∂ y 1 ∂ x 1 , ∂ y 2 ∂ x 2 ] [\frac{\partial y_1}{\partial x_1}, \frac{\partial y_2}{\partial x_2}] [x1y1,x2y2],那怎么得到呢?注意 ∂ y 1 ∂ x 2 \frac{\partial y_1}{\partial x_2} x2y1 ∂ y 2 ∂ x 1 \frac{\partial y_2}{\partial x_1} x1y2都是0,那是不是
[ ∂ y 1 ∂ x 1 , ∂ y 2 ∂ x 2 ] T = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 ] [ 1 1 ] [\frac{\partial y_1}{\partial x_1}, \frac{\partial y_2}{\partial x_2}]^\mathsf{T}=\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix}\begin{bmatrix} 1 \\ 1 \end{bmatrix} [x1y1,x2y2]T=[x1y1x1y2x2y1x2y2][11]
所以不用y.sum()的另一种方式是:

x = torch.tensor([1., 2.]).requires_grad_()
y = x * x

y.backward(torch.ones_like(x))
print(x.grad)
>>>tensor([2., 4.])

也可以使用autograd。上面和这里的torch.ones_like(x) 位置指的就是雅可比矩阵右乘的那个向量。

x = torch.tensor([1., 2.]).requires_grad_()
y = x * x

grad_x = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=torch.ones_like(x))
print(grad_x[0])
>>>tensor([2., 4.])

或者

x = torch.tensor([1., 2.]).requires_grad_()
y = x * x

grad_x = torch.autograd.grad(outputs=y.sum(), inputs=x)
print(grad_x[0])
>>>tensor([2., 4.])

下面是着重强调以及引申的几点

  • 梯度清零
    Pytorch 的自动求导梯度不会自动清零,会累积,所以一次反向传播后需要手动清零。
    x.grad.zero_()
    而在神经网络中,我们只需要执行optimizer.zero_grad()
  • 使用detach()切断,不会再往后计算梯度
    假设有模型A和模型B,我们需要将A的输出作为B的输入,但训练时我们只训练模型B,那么可以这样做input_B = output_A.detach()
    如果还是以前面的为例子,将a切断,将只有b一条通路,且a变为叶子节点。
    x = torch.tensor([2.], requires_grad=True)
    
    a = torch.add(x, 1).detach()
    b = torch.add(x, 2)
    y = torch.mul(a, b)
    
    y.backward()
    
    print("requires_grad: ", x.requires_grad, a.requires_grad, b.requires_grad, y.requires_grad)
    print("is_leaf: ", x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)
    print("grad: ", x.grad, a.grad, b.grad, y.grad)
    
    >>>requires_grad:  True False True True
    >>>is_leaf:  True True False False
    >>>grad:  tensor([3.]) None None None
    
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值