1、问题描述
给定n个字符及其对应的权值,构造Huffman树,并进行huffman编码和译(解)码。
构造Huffman树时,要求左子树根的权值小于右子树根的权值。
进行Huffman编码时,假定Huffman树的左分支上编码为‘0’,右分支上编码为‘1’。
2、算法
构造Huffman树算法:
⑴、根据给定的n个权值(w1, w2, …, wn)构成n棵二叉树的集合F={T1, T2, …, Tn},其中每棵二叉树Ti中只有一个权值为wi的根结点
⑵、在F中选取两棵根结点的权值最小的树,作为左、右子树构造一棵新的二叉树,且置其根结点的权值为其左、右子树权值之和
⑶、在F中删除这两棵树,同时将新得到的二叉树加入F中
⑷、重复⑵, ⑶,直到F只含一棵树为止
Huffman编码算法:
⑴、从Huffman树的每一个叶子结点开始
⑵、依次沿结点到根的路径,判断该结点是父亲结点的左孩子还是右孩子,如果是左孩子则得到编码‘0’,否则得到编码‘1’,先得到的编码放在后面
⑶、直到到达根结点,编码序列即为该叶子结点对应的Huffman编码
Huffman译(解)码算法:
⑴、指针指向Huffman树的根结点,取第一个Huffman码
⑵、如果Huffman码为‘0’,将指针指向当前结点的左子树的根结点;如果Huffman码为‘1’,将指针指向当前结点的右子树的根结点
⑶、如果指针指向的当前结点为叶子结点,则输出叶子结点对应的字符;否则,取下一个Huffman码,并返回⑵
<