采用动态规划解决。
设G[m][n]代表整个网格,dp[i][j]为代表从G[0][0]到G[i][j]路径数量。由规则可知:
状态转移方程为:dp[i][j]=dp[i-1][j]+dp[i][j-1],(1<=i<m,1<=j<n)
代码:
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp = [[1]*n] +[[1]+[0]*(n-1) for _ in range(m-1)]
for i in range(1,m):
for j in range(1,n):
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[m-1][n-1]
时间复杂度和空间复杂度都为:o(mn)
优化:
由状态转移方程可知:
dp[i][j]只需要它上面的元素和左边的元素,即dp[i][j-1]和dp[i-1][j],而我们最终想要的结果是dp[m-1][n-1],也就是说我们在求第dp的第i行的时候,只需要i-1行的数据,其它的都是中间值,可以不要,所以我们只需要两行就可以了第i行和第i-1行。
继续优化:(滚动数组)
但是仔细观察,在我们求dp[i][j]时候,dp[i][j]以及dp[i][j]后面的数据以及dp[i-1][0]到dp[i-1][j](不包括)都是没有用的,即标有红线的空间是没有用的。故我们恰好可以将两行合并为一行。
dp[j-1] | dp[j] |
此时状态转移方程为:dp[j]=dp[j]+dp[j-1]
dp[n-1]为我们所求解。
代码:
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
now=[1]*n
for row in range(1,m):
for col in range(1,n):
now[col] = now[col] + now[col-1]
return now[n-1]
空间复杂度o(n)