线性模型

题目一:模型:y = w * b 如图, 求w

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

#存放权值、损失值画图
w_list = []
l_list = []

for w in np.arange(0.0, 4.1, 0.01):
    l = 0
    for x, y in zip(x_data, y_data):
        y_pred = x*w;   #模型为: y=w*x 求w
        l += (y_pred-y)*(y_pred-y)
        print("loss:", l)
        #l.backward()  注:这里是遍历的权值 根本不需要反向传播更新权值了,最重要的这样没有该属性
    w_list.append(w)
    l_list.append(l)

plt.plot(w_list, l_list)
plt.xlabel('w')
plt.ylabel('loss')
plt.show()

结果:肉眼可见loss最小时w为2

题目二:改上述模型为y = w * x + b

 

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

x_data = [1.0, 2, 0, 3.0]
y_data = [2.0, 4.0, 6.0]

w_list = []
mse_list = []
b_list = []

for w in np.arange(0.0, 4.1, 0.01):
    for b in np.arange(0.0, 2.1, 0.01):
        l_sum = 0
        for x_val, y_val in zip(x_data, y_data):
            y_pred = x_val * w + b
            l_sum += (y_pred - y_val)*(y_pred - y_val)
        w_list.append(w)
        mse_list.append(l_sum/3)
        b_list.append(b)


fig = plt.figure()  # 定义新的三维坐标轴
ax3 = Axes3D(fig)
ax3.plot(w_list, b_list, mse_list)
ax3.set_xlabel('w')
ax3.set_ylabel('b')
ax3.set_zlabel('loss')
plt.show()

tips:仅供自己看 ,画出来的图奇奇怪怪,,,老师画出来好像不是这样的,等我画的出来的再改!!!!(右边为老师画出来的)

参考视频:https://www.bilibili.com/video/BV1Y7411d7Ys?p=2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值