使用sklearn对数据进行标准化/正则化

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/vivian_ll/article/details/90273008

一、0-1标准化

也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:
x=xminmaxminx^*= \frac{x-min} {max-min}
其中max为样本数据的最大值,min为样本数据的最小值。这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

sklearn实现:preprocessing.MinMaxScaler()

preprocessing.MinMaxScaler类将属性缩放到一个指定的最大和最小值(通常是1-0)之间
把特征的样本均值变成0,标准差变成1。

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
    [ 2., 0., 0.],
    [ 0., 1., -1.]])
scaler = preprocessing.MinMaxScaler()
print(scaler.fit_transform(X))
[[ 0.5         0.          1.        ]
 [ 1.          0.5         0.33333333]
 [ 0.          1.          0.        ]]
print(scaler.scale_)       # # 查看缩放因子(没太明白)
[ 0.5         0.5         0.33333333]
print(scaler.min_)
[ 0.          0.5         0.33333333]

使用这种方法的目的包括:
1、对于方差非常小的属性可以增强其稳定性。
2、维持稀疏矩阵中为0的条目。

二、 Z-score标准化

也叫标准差标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:
x=xμσx^* = \frac{x-\mu}{\sigma }
其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

sklearn实现1:preprocessing.scale()

直接将给定数据进行Z-score 标准化。

>>> X_scaled = preprocessing.scale(X)

>>> X_scaled                                         
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])
 
>>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0.,  0.,  0.])
 
>>> X_scaled.std(axis=0)
array([ 1.,  1.,  1.])

sklearn实现2:preprocessing.StandardScaler()

转换函数同上,使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据。

>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True)
 
>>> scaler.mean_       # 原始数据中每列特征的平均值                              
array([ 1. ...,  0. ...,  0.33...])
 
>>> scaler.std_           # 原始数据每列特征的方差(在python3中std_变为scaler_)                                
array([ 0.81...,  0.81...,  1.24...])
 
>>> scaler.transform(X)                              
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])
 
 
>>>#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[-1.,  1., 0.]])               
array([[-2.44...,  1.22..., -0.26...]])

去均值和方差归一化。且是针对每一个特征维度来做的,而不是针对样本。

实测MLP 神经网络等分类算法使用 MinMaxScaler 没有 StandardScaler效果好。

三、正则化

正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。

Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm,…)等于1。
1-范数:向量各分量绝对值之和
2-范数:向量长度
最大范数:向量各分量绝对值的最大值
p-范数:Xp=(i=1nxip)1/p=(x1p+x2p+...+xnp)1/p||X||_p=(\sum^n_{i=1}|x_i|^p)^{1/p}=(|x_1|^p+|x_2|^p+...+|x_n|^p)^{1/p}
该方法主要应用于文本分类和聚类中。例如,对于两个TF-IDF向量的l2-norm进行点积,就可以得到这两个向量的余弦相似性。

sklearn实现1:preprocessing.normalize()

可以使用preprocessing.normalize()函数对指定数据进行转换:

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
>>> X_normalized                                      
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

sklearn实现2:processing.Normalizer()

可以使用processing.Normalizer()类实现对训练集和测试集的拟合和转换:

>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')
>>> normalizer.transform(X)                            
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])
>>> normalizer.transform([[-1.,  1., 0.]])             
array([[-0.70...,  0.70...,  0.  ...]])

参考网址:
Sklearn-preprocessing.scale/StandardScaler/MinMaxScaler
关于sklearn.preprocessing中scale和StandardScaler的使用
Scale(标准化)和Normalization(正则化) 区别

展开阅读全文

没有更多推荐了,返回首页