yolov5 obb 旋转框 的安装调试与踩坑,win10

首先下载

https://github.com/hukaixuan19970627/yolov5_obbicon-default.png?t=N4HBhttps://github.com/hukaixuan19970627/yolov5_obb

 

下载权重6.0

Release v6.0 - YOLOv5n 'Nano' models, Roboflow integration, TensorFlow export, OpenCV DNN support · ultralytics/yolov5 · GitHubhttps://github.com/ultralytics/yolov5/releases/tag/v6.0

由于之前装过yolov5,环境基本配置好了。

旋转目标检测复现-yolov5-obb_yolov5旋转目标检测_浪迹天涯@wxy的博客-CSDN博客https://blog.csdn.net/wxy2020915/article/details/128542603

按照这个教程可以正常安装。

nms_rotated  安装。pytorch版本需要小于1.12.  不然报错。

Dota_devkit安装,swig需要下载swigwin。并配置环境变量。

按照之前的博客配置数据集。生成labeltxt。

 设置图片路径,分类数。yolov5obb_demo.yaml  。说不要1分类。添加一个空的。



# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ./dataset # dataset root dir
train: images #images   # train images (relative to 'path') 
val: images #images  # val images (relative to 'path') 
test: images  #images # test images (optional)

# Classes
nc: 2  # number of classes
names: ['ok','null']  # class names


# Download script/URL (optional)
# download: https://ultralytics.com/assets/coco128.zip

然后训练。

使用pytorch是1.10版本。超过1.12会报错。

python train.py --weights weights/yolov5n.pt  --cfg  models/yolov5n.yaml --data  data/yolov5obb.yaml --epochs 100  --device 0 --workers 0 --batch 8 --adam  --imgsz=1024

训练需要加入  --adam  ,自己的数据集不好收敛。

并且修改hyp.finetune_dota.yaml文件。方便收敛。

running train.py and mAP, P, R always 0 · Issue #446 · hukaixuan19970627/yolov5_obb · GitHubicon-default.png?t=N4HBhttps://github.com/hukaixuan19970627/yolov5_obb/issues/446

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

lr0: 0.001
lrf: 0.2
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 0.05
cls: 0.5
cls_pw: 1.0
theta: 0.5
theta_pw: 1.0
obj: 1.0
obj_pw: 1.0
iou_t: 0.2
anchor_t: 4.0
fl_gamma: 0.0
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 180.0
translate: 0.1
scale: 0.25
shear: 0.0
perspective: 0.0
flipud: 0.5
fliplr: 0.5
mosaic: 0.0
mixup: 0.1
copy_paste: 0.0
cls_theta: 180
csl_radius: 2.0

报错就调小batch 

  --batch  1

可以训练了。

all那行,不能是0。正常20个epoch之内会正常 出数字。

然后推理。

python detect.py --device 0 --source dataset/images/OK_00004.png --weights runs/train/exp13/weights/best.pt  --img=1024 

 

yolov5obb旋转框训练demo资源-CSDN文库icon-default.png?t=N4HBhttps://download.csdn.net/download/vokxchh/87803913完整的可以参考。

### YOLOv8 OBB 旋转实现使用教程 #### 模型初始化加载预训练权重 为了构建并加载带有旋转边界支持的YOLOv8模型,可以利用`ultralytics`库中的`YOLO`类。通过指定配置文件路径来创建模型实例,并调用`.load()`方法传入预训练好的权重文件完成模型初始化。 ```python from ultralytics import YOLO model = YOLO('yolov8s-obb.yaml').load('yolov8s-obb.pt') ``` 此段代码展示了如何基于特定于旋转目标检测配置(`yolov8s-obb.yaml`)建立模型结构,并加载对应的预训练参数(`yolov8s-obb.pt`)[^2]。 #### 数据集配置 对于旋转目标检测任务而言,数据标注通常采用五元组形式表示(x_center, y_center, width, height, angle),其中角度代表矩形相对于水平轴逆时针方向的角度偏移量。因此,在准备用于训练的数据集时,需确保标签遵循这一格式标准[^1]。 #### 训练过程设定 启动训练之前,还需指明所使用的数据集配置文件以及一些重要的超参数选项: ```python model.train( data='dota8-obb.yaml', epochs=100, imgsz=1024, batch=4, workers=4 ) ``` 上述脚本片段说明了针对DOTA v1.0这样的公开遥感图像数据集执行训练的过程设置,包括但不限于迭代次数(epochs)、输入图片尺寸(imgsz)、批量大小(batch)及多线程数(workers)等关键参数的选择[^2]。 #### 测试推理阶段 当模型经过充分训练之后,便可以在新的样本上进行预测操作或者评估其性能表现。具体做法是在测试模式下调用相应接口函数处理未经见过的真实场景下的影像资料,从而获取到包含位置信息在内的各类物体类别及其置信度得分的结果列表。 ---
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值