CNN(卷积神经网络)在iOS上的使用

本文介绍了如何在iOS11及更高版本上利用CoreML和Vision框架实现卷积神经网络(CNN)的应用。通过将CNN模型导入Xcode工程,Xcode会自动生成对应的Swift对象。接着,创建Image Analysis Request执行分析。详细步骤和示例代码可在提供的GitHub链接中找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在iOS11上推出了CoreML和架构在CoreML之上的Vision, 这样为CNN(卷积神经网络)在iOS设备上的应用铺平了道路。

将CoreML模型加载到App

让你的App集成CoreML模型非常简单, 将模型文件(*.mlmodel)拖进工程即可. 在Xcode中可以看到此模型的描述.
这里写图片描述
Xcode可以为此模型文件自动生成一个可以被使用的对象, 此预测人年龄的CNN的自动生成代码如下(Swift)

//
// AgeNet.swift
//
// This file was automatically generated and should not be edited.
//

import CoreML


/// Model Prediction Input Type
@available(OSX 13.0, iOS 11.0, tvOS 11.0, watchOS 4.0, *)
class AgeNetInput : MLFeatureProvider {

    /// An image with a face. as color (kCVPixelFormatType_32BGRA) image buffer, 227 pixels wide by 227 pixels high
    var data: CVPixelBuffer

    var featureNames: Set<String> {
        get {
            return ["data"]
        }
    }

    func featureValue(for featureName: String) -> MLFeatureValue? {
        if (featureName == "data") {
            return MLFeatureValue(pixelBuffer: data)
        }
        return nil
    }

    init(data: CVPixelBuffer) {
        self.data &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值