初识OpenMV

OpenMV学习笔记🧭🏔🌋🛤🏞🏜

🌻🌻🌻 OpenMV是一个开源,低成本,功能强大的机器视觉模块。以STM32主流芯片为核心,集成了OV7725摄像头芯片,在小巧的硬件模块上,提供Python编程接口。
🌼🌼🌼使用者们(包括发明家、爱好者以及智能设备开发商)可以用Python语言使用OpenMV提供的机器视觉功能,可根据自身特定的视觉特征需要,通过python设计合理的算法,进而得到稳定可靠的输出,再配合其他单片机交互,有机统一完成对应项目,为自己的产品和发明增加有特色的竞争力。

在这里插入图片描述
OpenMV起初是国外的开源产品星瞳科技OpenMV中国官方代理,还做了好多中文视频文档教程,这个模块的目标是成为“机器视觉世界的Arduino “,博主认为未来可期😊😊😊

1. OpenMV的优势

  • 人脸/眼睛检测:您可以使用 OpenMV Cam 使用内置的 Haar Cascade 特征检测算法来检测人脸并找到眼睛。您也可以精确跟踪学生。
  • 拍照:OpenMV Cam 可以将灰度或 RGB565 BMP / JPG / PPM / PGM 图像保存到连接的 μSD 卡。您也可以保存延时照片。
  • 低功耗:OpenMV Cam 在处理图像时使用的电流小于 200 mA,因此您可以像连接到 USB 端口的微控制器 (Arduino) 一样使用 OpenMV Cam。
  • 视频录制:您可以将灰度或 RGB565 MJPEG 视频和灰度或 RGB565 GIF 图像保存到附带的 SD 卡。您也可以在视频上叠加图形/文字。
  • 斑点/标记跟踪:OpenMV Cam 可以跟踪灰度或 RGB565 图像中的颜色斑点。它可以进行多色/多斑点跟踪。此外,OpenMV Cam 也可以检测颜色代码。
  • 输入/输出控制:借助 OpenMV Cam,您可以使用机器视觉来控制现实世界中的 I/O 引脚。OpenMV Cam 具有 SPI 总线、I2C 总线、异步串行总线 (RX / TX)、ADC、DAC 等。

TensorFlow 支持: 分类图像从未如此简单!使用 OpenMV IDE,您可以轻松地构建一个数据集,将该数据集上传到云端的Edge Impulse,并使用迁移学习和 MobileNet 生成一个 TensorFlow Lite 卷积神经网络 (CNN),该网络将在您的 OpenMV Cam 上运行。
在这里插入图片描述

2. OpenMV的劣势

  • 做不了复杂的算法:比如OCR识别,车牌识别,猫狗分类,深度学习之类的。
  • IO口资源有待拓展,运行时间不能过长,发热较大也会出现变砖
    在这里插入图片描述
    OpenMV故障可以参考:OpenMV固件升级(DFU)

3. OpenMV的基础

  • 需要有一点图像处理背景知识
  • 有过一门编程语言,最好是学习了python,我们接下来的开发就是根据OpenMV IDE的python开发环境,了解if else等逻辑语句,知道变量赋值等概念。
  • 有单片机的基础,了解IO输入输出口,串口通讯等概念。

4. 点亮我们的OpenMV

本人采用win10 的OpenMV IDE 2.8.1开发环境,下面代码就是点亮我们的OpenMV,==打开机器的眼睛==👨‍💻👨‍💻👨‍💻
在这里插入图片描述

# Hello World Example
#
# Welcome to the OpenMV IDE! Click on the green run arrow button below to run the script!

import sensor, image, time

sensor.reset()                      # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
sensor.skip_frames(time = 2000)     # Wait for settings take effect.
clock = time.clock()                # Create a clock object to track the FPS.

while(True):
    clock.tick()                    # Update the FPS clock.
    img = sensor.snapshot()         # Take a picture and return the image.
    print(clock.fps())              # Note: OpenMV Cam runs about half as fast when connected
                                    # to the IDE. The FPS should increase once disconnected.

然后点击绿色三角形运行程序,显示结果:
在这里插入图片描述

5. 总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2345VOR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值