自动驾驶
文章平均质量分 97
2345VOR
大家的世界,一起来守护!“顺势而为,达则兼济天下”人生信条。“脚踏实地,仰望星空”座右铭。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【强化学习环境配置+github 无人机强化学习demo复现】
通过本【强化学习环境配置+github demo复现】,您应该能够从零到一入门强化学习啦,也完成无人机的强化学习demo复现。从而实现对外部世界进行感知,充分认识这个有机与无机的环境,科学地合理地进行创作和发挥效益,然后为人类社会发展贡献一点微薄之力。🤣🤣🤣我会持续更新对应专栏博客,非常期待你的三连!!!🎉🎉🎉如果鹏鹏有哪里说的不妥,还请大佬多多评论指教!!!👍👍👍下面有我的🐧🐧🐧群推广,欢迎志同道合的朋友们加入,期待与你的思维碰撞😘😘😘《基于MASAC强化学习算法的多无人机协同路径规划》原创 2024-12-23 05:00:00 · 3489 阅读 · 0 评论 -
【【自动驾驶】车辆运动学模型】
在自动驾驶领域,通常采用单车模型来简化实际车辆的复杂性。此模型将车辆视为具有两个转动轴的刚体,即前轮和后轮,每个轴上的左右轮合并为一个轮子来考虑。车辆重心:点C,代表车辆的质量中心。前后轮距离lfl_flf和lrl_rlr分别从前轮中心到重心的距离和从后轮中心到重心的距离。轴距LlflrLlflr。速度VVV,表示车辆重心的速度。滑移角β\betaβ,车辆速度矢量与车辆纵向轴之间的夹角。航向角ψ\psiψ,车身与X轴的夹角。转向角δf。原创 2024-10-21 05:00:00 · 2937 阅读 · 0 评论 -
【路径跟踪控制:Pure Pursuit控制与车辆运动学模型】
PID 控制器适用于需要高精度和鲁棒性的应用场景,但需要仔细调参。Pure Pursuit 控制器适用于实时性要求高、路径跟踪精度要求适中的场景,特别适合自动驾驶等应用。Bang-Bang 控制器适用于对响应速度要求高、但对精度要求不高的场景,如简单的开关控制。本文介绍了 Pure Pursuit 控制的基本原理及其在车辆路径跟踪中的应用。通过 Python 代码实现了车辆运动学模型和 Pure Pursuit 控制器,并展示了其在实际路径跟踪任务中的表现。原创 2024-10-28 05:00:00 · 2225 阅读 · 3 评论 -
【路径跟踪控制:PID控制与车辆运动学模型】
路径跟踪控制是自动驾驶技术中的一个重要组成部分,它涉及到如何使车辆沿着预定的路径行驶。本文将详细介绍路径跟踪控制的基本原理,特别是使用PID控制器和车辆运动学模型的方法。我们将通过Python代码示例来展示如何实现这一控制策略。原创 2024-10-23 16:45:00 · 2741 阅读 · 0 评论 -
【路径跟踪控制:Bang-Bang 控制与车辆运动学模型】
在上文中,原始的Bang-Bang控制算法主要依赖于车辆当前位置与参考路径之间的横向误差来决定转向角。改进后的Bang-Bang控制算法引入了对路径点的动态管理机制,以适应更长的路径跟踪需求。后期会有更多的路径跟踪(PID,LQR,MPC等)算法分享,希望本文对你理解和实现无人车轨迹跟踪有所帮助。通常情况下,车辆模型被简化为 以后轴中心为车辆中心的单车运动学模型,该模型假设左右前轮合并为一个轮子,后轮同样合并为一个轮子。这里的逻辑是,当角度误差较大时(超过90度),我们允许更大的转向角以便更快地纠正误差;原创 2024-10-21 14:30:09 · 2109 阅读 · 0 评论
分享